
The AMODEUS Project
ESPRIT Basic ResearchAction 7040

AMODEUS Partners:
MRC Applied Psychology Unit, Cambridge, UK (APU)

Depts of Computer Science & Psychology, University of York, UK. (YORK)
Laboratoire de Genie Informatique, University of Grenoble, France.(LGI)
Department of Psychology, University of Copenhagen, Denmark. (CUP)
Dept. of Computer & Information Science Linköping University, S. (IDA)

Dept. of Mathematics, University of the Aegean Greece (UoA)
Centre for Cognitive Informatics, Roskilde, Denmark(CCI)

Rank Xerox EuroPARC, Cambridge, UK.(RXEP)
CNR CNUCE, Pisa Italy (CNR,CNUCE)

Initial draft preliminary on the fly PAC analysis
for the ECOM Interface

 Nigay L., Coutaz J. & Salber D.
Laboratoire de Génie Informatique, University of Grenoble

19th March 1994

Amodeus Project Document:  System Modelling/IR4



Abstract
This document describes a preliminary analysis of the ECOM exemplar from the
PAC perspective. It  summarises the process used to address the design issues and a
list of lessons drawn from the exercise. We describe our analysis for issues 1 and 2
about making AV connections. We then propose a QOC representation of this
analysis Finally, we present a PAC-Amodeus architecture for the current ECOM
interface along with a QOC description that justifies the software design solution.



1. Introduction
This document describes a preliminary analysis of the ECOM exemplar from the
PAC perspective. The following issues are addressed:

1) How well does the information displayed by the ECOM interface
conform to the underlying system states and potential actions?

2) How should the display and dialogue be designed to ensure that the user
selects the correct connection and always gets the connection they
expect?

3) How should the users specify their availability level?

4) What kind of control should be offered over bandwidth and when?

We consider that questions 1 and 2 cover the core design issue “Making and
Breaking AV connections” as described in Document “EuroCODE AV Exemplar
Round 2, RP3-ID-IR6. Questions 3 and 4, on the other hand, are identical to the
original core design issues stated in RP3-ID-IR6.

This document is structured in the following way: Section 2 is a summary of the
process used to address the design issues and a list of lessons drawn from the
exercise. In sections 3 and 4 we describe our analysis for issues 1 and 2. Issues 3 and
4 will be addressed in a revised version of the document. Section 5 is a QOC
representation of our analysis of the problem. In section 6, we propose a PAC-
Amodeus architecture for the current ECOM interface along with a QOC description
that justifies the software design solution.

In the following discussion, expressions in italic denote entries in the system
modelling glossary SM/WP26.

2. Process and Lessons

How did we proceed to address the design issues?

1. Our first reaction was to express design issues in terms of properties and
principles developed by the system modellers.

2. Secondly, concepts such as the notions of connection and accessibility
level, have been analysed thoroughly leading to a better understanding
of the domain and a better coverage of the services that can be provided.

3. Thirdly, based on a formal description of the key concepts, we have
been able to extend or modify the current QOC analysis.

Lessons drawn from this analysis include:



1. It is very hard to stick to a PAC role.  Many of our suggestions go
beyond the scope of PAC software engineering. PAC is primarily
applicable from precise external specifications and requires knowledge
about the underlying implementation tools. The EuroCODE questions
do not emphasize this perspective. As a result, some of our suggestions
are proposals for new external specifications along with their
implications onto the software architecture.

2. We would like to extend QOC into a QORC notation. In QOC, options
are linked to criteria only. We have found it useful to link options to
requirements as well. For example,  in the particular case of EuroCODE,
option “proactive feedback” requires (or at least suggests) that the data
base for access control be active. If the data base at hand is passive, then
honesty may not be achieved satisfactorily. If so, proactive feedback
cannot be considered as a realistic design option.

3. The meaning of some criteria is context dependent. For example, when
user-centered, flexibility expresses the scope of freedom among a set of
possible choices. In software engineering, flexibility is related to
product revision. It denotes the capacity of the software to accept
modifications. When ambiguity occurs, we suggest to prefix the names
of software engineering criteria with “SE” (stands for “Software
Engineering”).

4. We have derived some heuristics about classes of questions that
designers should formulate when using QOC. These are based on the
quintilian1 model:

- What ? e.g., what information is relevant to the task? (this question is
sometimes addressed in theQOC examples we have seen. Should be
addressed more systematically)

- Who? e.g., who is concerned, who is in charge of the task? (this
question is rarely addressed in the QOC examples we have seen. Q5 in
Issue 2 (How are accessibility levels defined?) is actually an example
of a “who” question. It should be rephrased accordingly

- Where? e.g., where, on the screen, to present information (this question
is frequently addressed in the QOC examples we have seen)

- When ? e.g., when to present information (this question is rarely
addressed in the QOC examples we have seen)

- How? widely covered in most QOC examples we have seen
- Why? rationale and causecovered by QOC criteria.

To emphasize the “what, who, how, etc.” nature of questions, we have
suffixed question names with their rhetorical type.

                                      
There are three levels of sophistication in the EuroCODE project technology. These are referred to as
the Low Road, Middle Road and High Road Demonstrators.

1 From Marcus Fabius Quintilianus: Roman rhetorician of the first century A.D.



5. We suggest that the QOC notation be extended with an encapsulation
mechanism just like procedures are used in programming languages. For
example, the subtrees under Q5 and Q8 are similar (except for one
option).  If they were strictly similar, then one could replace the two
subtrees by the same name and that name would denote a QOC subtree.
The encapsulation facility would increase lisibility, would point out
similar lines of reasoning, and would augment consistency across the
user interface. They would eventually serve as reusable rationale
applicable by other designers to other design problems (just like libraries
are ready for use pieces of code that are reusable by different
programmers in different contexts).



3. Design issues as properties

Questions 1 and 2 are concerned with observability and conformance. In turn,
observability and conformance can be constrained in terms of honesty and
affordance.

As defined in the system glossary (SM/WP26),

• Observability is the property that the presentation of a system contains
sufficient information to allow the user to determine the functional state
of the system. In the case at hand, we need to identify what information
is relevant to the user for making AV connections. For doing so, we
need to model the notion of connection in a precise way. If some
information is missing in the presentation, then the functional state is not
observable or unsufficiently observable.

• Conformance is the property that the presentation of the system mirrors
the underlying behaviour of the system. If we agree that observability is
reached in a reasonable way by the ECOM presentation, the next step is
to check how well the presentation matches the behaviour of the
functional state.

• Honesty is the property that the presentation of the system renders its
functional state appropriately (e.g., does not distort the functional state).
Honesty constrains conformance a little bit further: not only there should
be a correspondence between the presentation and the functional state
that is relevant to the task, but also features of the presentation should
lead the user to interpret the functional state correctly. In particular, the
presentation cannot lie. In the case of EuroCODE, it may not be always
possible for the system to present the relevant system state in an honest
way. In particular, changes in the system state that are relevant to
multiple users cannot be updated instantaneously and simultaneously on
every workstation. In such circumstances, the system should show the
users that the current rendering is possibly wrong or unstable. Honesty is
a necessary but not always sufficient condition for the user to be able to
elaborate a correct mental representation of the functional state.
Affordance goes one step further.

• Affordance is the property that the presentation of a system conveys
information about the actions that can be performed by the user on that
system. This property relates to the "real world" understandings that the
user has. In EuroCODE, the door metaphor for expressing levels of
availability favors affordance.

Properties such as observability, conformance, honesty and affordance can be used in
two ways: as evaluation criteria of the current ECOM design or as new criteria in a
QOC description.



4. Analysis of the key concepts

The key concepts we have considered include the notions of connection, level of
availability, system state relevant for the caller, and system state relevant for the
target user.

4.1. Connection
A connection is a task domain concept (i.e.,  a concept identified by task analysis as
relevant to the user to accomplish the tasks in that domain). It can be characterized by
a set of attributes and operations. Operations are used to modify the attributes.

For the purpose of EuroCODE, we have identified 7 attributes that are relevant to the
user. (In the following description, operations are not described. They should result
from a task analysis.):

• target: denotes the end point of the connection. Its domain is: <myself,
another user, another site, another window>.

• source: denotes the source point of the connection. Its domain is:
<myself, another user>.

• orientation: defines whether the connection is one way or two-way. The
domain is: <one-way-in, one-way-out, two-way>.

• duration: provides an indication of the duration of the connection. It
may be <finite, infinite or instantaneous>. When finite, the connection is
closed after a certain amount of time determined by a system parameter.
The value of this parameter may or may not be modified by the user
through  preferences. At the opposite, a connection whose duration is
infinite will be broken on user’s will. The system will close an infinite
connection on the occurrence of exceptions (resource availability,
breakdowns, time out, etc.). An instantaneous connection is a special
case of finite connection whose duration is short and set up by the
system.

• occurrence: provides an indication of when a specified connection will
occur. It may be <now, as soon as possible, deferred>. A “now”
connection means that the system should try to connect the two end
points right on the spot without any delay. If the connection does not
succeed, then there is no retry. When “asap”, the specified connection
will be attempted as soon as the preconditions for the connection are
satisfied. For example, the camera on the target site may not be turned
on. As a result, a video connection cannot occur. If specified as “asap”,
the connection will automatically be attempted by the system when the
camera becomes available. When “deferred”, the connection will be



attempted later at some specified point in time. The scenario provides a
good illustration of the utility of deferred connections: the supervisor
leaves a message to Lisette saying he will await in the next two hours.
Because he is eager to talk to Lisette, he may not want to rely on
Lisette’s will to call him back. In order to be aware of Lisette’s presence
as soon as possible, he may defer a glance to Lisette for the next half
hour and delegate the glance task to the system.

• media: specifies the type of media involved in the connection. It may be
<video, audio, text, etc.>.

• speed desired: characterizes the speed desired for transferring
information <high, low, medium>. Note that the desired speed may be
distinct from the speed that will be obtained effectively.

• quality desired: characterizes the quality desired for transferring
information. It may be <high, medium, low, etc.>. Note that the desired
quality may be distinct from the quality that will be obtained effectively.

For example, a glance connection is defined as the 7-uple: (target = another user,
source = myself, orientation = one-way-in, duration = instantaneous, occurrence =
now, media = video, desired speed = high, desired quality = medium,).

Similarly, predefined task-oriented connections described in the EuroCODE
document can be expressed using 7-uples.

One first benefit of the formal description of the concept of connection opens the way
to the definition of new connection types. For example, users may be able to define
their own glance connection using an audio port: (target = another user, source =
myself, orientation = one-way-in, duration = finite, occurrence = asap, media = audio,
speed = high, quality = high).

The ability for users to define new connection types by combining attribute values
provides more flexibility but has a direct impact on the definition of access control.
Access control will have to be defined in terms of attribute combinations. It will no
longer be based on predefined task names only.

Our description of the concept of connection spawns news options and questions that
will be developed in section 5.

4.2. Level of availability
According to the original motivation of the EuroCODE designers, the level of
availability of a particular user provides other users with a general sense of his
current willingness to accept intrusion.

We have identified seven levels of availability:



• fully available (door is opened)
• half available (door is ajar)
• busy but willing to be interrupted (door is pushed)
• busy (door is closed)
• very busy (door is locked)
• out of the office (user should be back later in the day)
• out of town (there is no hope to contact the user)
• not logged in (user is either in or out of town)

In Cave, the notion of availability is confused with that of access rights. For instance,
if the door is closed, glance operations are forbidden. We think that the level of
availability and access rights are two orthogonal concepts. A user may be busy for the
day but is willing to accept any type of connection with a particular person. Thus, if a
caller has the right to vphone a busy user, it should be up to the caller to decide
whether the target user should be interrupted or not (social control as opposed to
technical control). The only problem we envision with our approach is the case where
a target user shows a fully open door but denies a particular user any form of access.
In such a case, should the system detect this type of social problem and propose the
target user to show, for example, a closed door? Or should the system be dishonest
and take the decision to show a closed door anyway?

The level of availability has two complementary roles: it shows other users the
willingness of the user to accept intrusion and, in case of intrusion, it indicates the
system the type of warning messages to use. For example, if you are busy
brainstroming with other collegues, although you accept to be glanced, you may not
want to hear audio warnings about glance connections. From this analysis, we may
spawn new questions: should “before” and “after” messages be attached to level of
availability as well?

See section 5 for an expansion of the QOC skeleton about availability.

4.3. System state for callers
A number of information hold by the system is of interest to the caller. It includes
information about uncertainty, information about the target, and information about
the local workstation.

• information system state is uncertain (or transient) while the system
state is being consolidated across the network. This corresponds to the
concept of “grey area” as used in operating systems and DBMS. In order
to ensure system honesty, users must be aware of grey areas.

• information about the target state. These include:

- status and properties of the physical target resources. For every
resource used in a connection, the caller should know whether the
resource is busy or available, whether it is turned on or off, etc.
Properties include quality level, transmission rate, etc. Knowledge of
physical properties will have an impact on the caller’s expectations. If,
for example, a high quality transfer is desired and "real time" cannot be



guaranteed, then a deferred offline transfer through a file should be
made available;

- level of availability of the target user;

- access rights. For every type of connection, the caller should know
whether the target user will accept, will reject, may accept or reject on
the fly (dynamic control);

- location of the target user. If the target user is next door, the caller will
expect the system to perform fast and high quality connections.
Knowledge about the target’s location in terms of distance, city name,
etc., will have an impact on the caller’s expectations in terms of
response time conformance.

• cost of communication (in terms of charging money)

• information about the local workstation. These include primarily:

- the availability level of oneself;

- status and properties of the physical local resources. For every resource
used in a connection, the caller should know whether the resource is
busy or available, whether it is turned on or off, etc. In particular, the
user should know the number and types of connections that are
engaged and that can be engaged in the current state.

We have identified what system state variables are of interest to the caller. When
should these state variables be disclosed to the caller? Should all of them or some of
them be provided proactively? if so, the caller is able to predict the outcome of the
attempts. Should they be provided after the fact? If so, the user may be informed
about the exact reason of the failure or success. Should they be provided proactively
with the possibility of knowing why a connection would fail? Such questions are
refined in 2.4. How and where questions will not be addressed.

4.4. System state for target users
The target user should be aware of which connections are being performed or has
been attempted while he was away. Depending on the connection type, we need to
make a distinction between “before”, “after” and “attempts” warnings.

Before and attempt warnings should contain:
• caller’s identification,
• connection type.

Should the form of warnings depend
• on caller’s id?
• on target’s level of availability?
• on connection type?



Should warnings be
• Unvoidable? If so, audio and/or visual
• Transient?

5. Extension and modification of the initial QOC skeleton

Options in Q1 must be rephrased to mirror our analysis for the concept  of
“connection”. In addition, as discussed above, we propose that users be able to define
their own task names by combining connection attribute values. Thus Q1 becomes:

Q1-what: What types of connection to define within the architecture?
O1.1: Defined in terms of connection attributes

C: completeness (coverage of all of the possibilities)

O1.2: Distinguished in terms of predefined user's task names; E, T

O1.3: User defined task names by combining connection attributes
C: flexibility
C: efficiency (adaptability to users’ preferences= shortcut)
C: increase software development cost (extra coding)

In option O1.2, user’s task names are those that are predefined in the system whereas
in  O1.3 task names are those defined by the user by combining connection attributes.

Figure 1 shows one possible way of making O1.3 available to the user. The “edit”
and “connection” windows could be grouped together as in the Define Styles
command in WORD. The ability for the user to define new connection task names
spawns a new question (Q1.3) about the layout and accessibility of the task names.

Q1.3 spawns from O1.3. Q1.3 should be linked to Q5, Q6, Q7 and Q8, Q9, Q10 of
the skeleton provided in RP3-ID-IR6.

Q1.3.how: How AV connection task names be rendered?
O1.3.1: as buttons
O1.3.2: as pop-down
O1.3.3: as a combination of both (frequent tasks as buttons, unfrequent as pull-

down)

O1.3.3 spawns new question: shall the combination be decided by the system or
dynamically controllable by the user (preferences)?



Target...

connect

glance

message

snapshot

other ...
audio-short
myconnect
edit ...

audio-short
myconnect
new

Edit

ok cancel

Faber

(a)

Connection: Untitled

Date: Now As soon as possible later: 

Duration: Finite Infinite Instantaneous

Bandwith: High Low

Orientation
: 

In Out In and Out

Media: Video Audio Image

ok cancel

(b)

Figure 1: How to define a new type of connection. A sketchy layout.
(a) Create a new type of connection.

(b) Parameters to specifiy a type of connection.

In the current QOC skeleton, we have not seen any explicit design rationale that
justifies the structure of the ECOM connection window. In the informal description it
is said that this window is composed of three parts: connections to people, connection
to oneself and to non personnal nodes, and the level of availability of oneself. We
suggest a different organization for the connection window and propose two new
question Q’1 and Q’2.



Q1-how: How should connection window be structured?
O1.1: Structure based on non personal /personal target; EC

C: Hittability
O1..2: No structure (see figure 2 for a proposal inspired from current ECOM)

C: Low screen clutter

Q2-how: How should availability level be displayed?
O2.1: as a palette of possibilities with curent selected level highlighted; EC

C: Hittability
O2.2: as a pull-down menu with current selected level as header of the menu

C: Low screen clutter

Target...

connect

glance

message

snapshot

other ...

User 2

By name
By location
By team
By role
By availability

Me

User 1

User 2

Site 1

Site 2

To be ordered by:

{

Figure 2: Define the target of a connection. Targets could be organize as a two level
menu: one level for category (windows, sites, users) and the second
level for the instances in the category.

Analysis in 4.3 (system state for callers) spawns the following “what” questions not
addressed in the QOC original skeleton:

Q2-what: what system variables should be observable to the caller?

Q3-what: what system variables should be observable to the callee (target)?



We develop Q2 first.

Q2-what: what system variables should be observable to the caller?
O2.1: about target
O2.2: about oneself
O2.2: about uncertainty (software grey areas)

C: Support honesty
R: openness of commitment algorithms

To be realistic, O2.2 requires that the algorithms that are in charge of managing grey
areas be able to dynamically communicate their state to other software components
(e.g., the user interface).

O2.1 and O2.2 spawn questions Q2.1 and Q2.2 respectively.

Q2.1-what: What variables about target should be observable to the caller?
O2.1.1: Status and properties about physical resources (see 2.3.3 for more

details)
C: Support expectation about system response time and quality of

transmission
C: Increase confidence (e.g., feedback about the status of the connection:

“trying to contact target”, “target notified”, “waiting for target to
answer”)

O2.1.2: Level of availability (see 2.3.2 for detailed analysis of what type of
availability)

C: Support social control

O2.1.3: Access rights (spawns Q2.1.3 below)

O2.1.4: Location (see 2.3.3)
C: Support expectation about system response time

Q2.2-what: What variables about oneself should be observable ?
O2.2.1: Status and properties about physical resources

C: Low human memory load

O2.2.2: Level of availability
C: Low human memory load

O2.2.3: Ongoing connections
C: Low human memory load



Option O2.1.3 (access rights about the target) spawns the following question:

Q2.1.3-what: What information about access rights
O2.1.3.1: Connection type
O2.1.3.2: Target will reject (i.e., access denied)
O2.1.3.3: Target will accept (i.e., access permitted)
O2.1.3.4: Target may accept (i.e., on the fly dynamic control by target)

In turn, option O2.1.3.2 raises a new question:

Q2.1.3.2-who: Who is in charge of elaborating messages for notifying rejection?
O2.1.3.2.1: By target

C: Supports customization (interpersonal relation)
C: Supports informativeness
C: Additional task  (spawns new questions about how and when to specify

message)

O2.1.3.2.2: By system
C: Supports anonymity
C: Ease of implementation

So far, we have developed question Q2-what (what system variables should be
observable to the caller?). The How questions will not be developed. We need now to
look at temporal issues.

Q2-when: When system variables be observable to the caller?
O2.1: Proactively (i.e., as value changes)

C: Low  errors due to proactive feedback
R: Browsability of system state to reduce screen cluttering
R: Active data base to support conformance and honesty
R: Efficiency of the underlying system to support response time

conformance

O2.2: A posteriori (e.g., after a connection has been attempted)
C: Support explanation about failures

O2.2: Proactively with facility to get explanation
C: Low  errors
C: Support explanation about failures
R: Browsability of system state to reduce screen cluttering
R: Active data base to increase conformance and honesty
R: Efficiency of the underlying system to support response time

conformance



As demonstrated by the above when questions, we have considered the state variables
globally. It may be useful to develop “when” questions at a finer grain.

Having QOC’ed about the caller, we need to switch to the target:

Q3-what: What system variables should be observable to the target?
O3.1: Events about “connection attempt” (type, date, caller id)
O3.2: Event “begin of connection” (type, caller id)
O3.3: Event “end of connection”

Q3’-what: On which ingredient notification rendering should depend?
O3.1: Level of availability of the target
O3.2: Caller
O3.3: Type of connection
O3.4: Combination of the above



6. PAC-Comments

Issue 1: Making and Breaking AV

Q11: In what order should user specify connection type and target?
O11.1: Either; when both selected hit confirm button to fire up message
window  or connection
O11.2: Connection type then target
O11.3: Target then connection type; E, EC

Same agents whatever the option is:

Target Connection
type

Ciment

Q12: How to exit communication mode?
O12.1: On termination of active use; E, T, EC ->
O12.2: On selection of new mode

Q13: How to deselect communication target?
O13.1: On termination of the communication; T
O13.2: On selection of a new target; E, EC

Many connections at a given time (if technically feasible):
Benefits of the agent approach: one agent per opened connection



Connection

Window displaying a 
video or an image

Connection

DA
Id connection -> Id PAC

Data

Network



7. PAC-Amodeus architecture for current ECOM
interface and software design rationale

In this section, we present the software architecture of the ECOM system according to
its current design state. For doing so, we have used Figures 5 and 6 in Document
RP3-ID-IR6. In paragraph 7.2, we show how QOC has been used to trace our
software design decisions.

7.1. PAC-Amodeus architecture

Figure 4 shows one possible PAC-Amodeus software architecture for implementing
the current ECOM system.  Figure 5 presents the software agents hierarchy refining
the Dialogue Controller.

On one side of the arch, the Low Level Interaction Component (LLIC) denotes the
underlying software and hardware platform. It receives mouse and keyboard events
from the user. It also manages the presentation and contains functions to play video
inside a window, functions to produce sounds and functions to display graphics on
screen. The Presentation Techniques Component (PTC) bridges the gap between the
Dialogue Controller and the LLIC. The Dialogue Controller (DC) is then independent
of the functions playing video for example.

On the other side of the arch,  the Functional Core (FC) corresponds to the functions
to send and receive messages along the network. The Functional Core Adaptor (FCA)
allows communication between its two surrounding components by implementing a
communication protocol. It is therefore possible to receive information through the
network and to handle user events: This is managed within the DC organized as a
hierarchy of PAC agents.

Users' states (e.g., their access rights and availability) give rise to the question: Where
to maintain this information? Two options are possible:

• One option is to duplicate the data base about access rights on each
workstation. The data base will therefore be located inside the FCA.
This option will guarantee the stability of the response time as far as no
request is sent through the network. On the other hand, it will increase
the number of messages through the network to update the duplicated
data bases.



• Another option is a centralized or distributed data base that is not local
to the workstations. in this case, the data base is maintained by the FC. It
is a good solution to reduce the number of messages. But the response
time stability for displaying the status of a particular user (necessary to
provide pro-active feedback) is no more verified since response time
depend on network load.

Functional 
Core 

Adaptor

- Network

- Connections

Functional Core

Dialogue Controller

Presentation 
Techniques 
Component

Low Level 
Interaction 
Component

DB:
Users' state

Duplicated

Centralized  or 
distributed  

Rendering function:
Video
Sound
Graphic

Figure 4: Software components implementing the ECOM system (applying PAC-
Amodeus model).

We synthesize this design issue "Where to locate the data base?" within a QOC
space:

Q1: Where should the data base of users' state be located?
O1: Centralized or distributed
O2: Duplicated on each workstation



Q1: Where should the 
data base of users' state 
be located?

O: Centralized 
 or distributed

O: Duplicated on 
each workstation

C: Response time 
stability

C: Minimize 
Network load
(number of 
messages to update 
the database)

C: Robutness



At the top of the arch, the Dialogue Controller is comprised of PAC agents: Figure 5
shows the two level hierarchy.
• The root agent "Make a connection" is in charge of the global control of the
interaction with the user. The Presentation facet corresponds to the buttons to
establish a connection as shown in figure 5. The Abstraction part maintains the
current connection to be established. At the creation of a connection, the Abstraction
facet sends the request through the FCA to the network. To establish the connection,
the "make a connection" agent dynamically creates an instance of a Connection
agent.

My status Interpersonal control 
access One connection

Make a connection

One connection

FCA
QoS

Ask for 
connection

Video, Audio, image or text

Status to update the DB 
of user's availability

User >

connect

glance

message

snapshot

Faber
Sites > Windows>

mirror

Make a connection
P

Figure 5: PAC agents organizing the Dialogue Controller component.

• The "Connection" agent corresponds to a single connection. Its Abstraction part
receives information to be displayed such as a movie from the FCA (FCA



corresponds to the interface with the network). This software design allows the user
to establish multiple connections at a given time. Each connection is managed by a
dedicated agent.

• The "Status" agent models the window where the availability of the user is
displayed. Its Abstraction facet maintains the current availability of the user.  When
the user selects the Exceptions button, the corresponding event is received by the
Presentation facet. The "Status" agent sends a message to the "Make a connection"
agent which will in turn create or make active the "Interpersonal control access"
agent.

• The "Interpersonal control access" agent corresponds to the form in figure 5 in
Document RP3-ID-IR6. Its Abstraction facet maintains the exceptions defined by the
user.

7.2. QOC Space to justify the hierarchy of PAC agents

7.2.1. A generic QOC space

One can use the set of heuristic rules presented in [Nigay&Coutaz 92, Nigay 94] to
derive the hierarchy of PAC agents of the Dialogue Controller. These rules help
defining the levels of abstraction that are necessary to the interpretation of user's
inputs and to system state rendering.

For example, one of these rules proposes that a cement agent be used to perform the
fusion of user's inputs when these inputs are distributed over multiple agents and
when their combination "makes sense" to the system. Another option is that the
combination of user inputs be performed by the agents themselves. For doing so, they
would need to exchange messages directly. It may be more efficient but they would
not be reusable independently. Clearly, our analysis draws upon software engineering
criterias such as those devised by McCall (see Annexe A and B for a complete list).
(Remark: McCall  refines each factor in terms of criteria. In this paper we use the first
level only, i.e., the factors.)



Q: How to perform 
fusion of related data 
between a set of 
agents?

O: By the agents 
themselves

O: By a cement 
agent, father of the 
agents

C: Maintainability

C: Flexibility

C: Testability

C: Portability

C: Reusability

C: Correctness

C: Interoperability

C: Reliability

C: Efficiency

C: Integrity

C: Usability

Product 
transition

Product 
revision

Product operations

RULE:

Another general interesting question applies to the leaf agents of the hierarchy: In
general, leaf agents are introduced to support elementary tasks. Do we need a
dedicated agent to manage this task or do we delegate this competence to the root
agent? We address this question using the following QOC space.

Q: How to model an 
elementary  task?

O: Embedded 
within the parent 
agent

O: Embedded in a 
dedicated agent

C: Maintainability

C: Flexibility

C: Testability

C: Portability

C: Reusability

C: Correctness

C: Interoperability

C: Reliability

C: Efficiency

C: Integrity

C: Usability

Product 
transition

Product 
revision

Product operations

RULE:

The above QOC space is generic and does not address any particular application. The
QOC space expresses two general rules:



• RULE 1: Minimizing the number of levels within the hierarchy as well
as the number of agents is good for efficiency: it reduces the message
communication between the agents.

• RULE 2: Adding agents increases modularity. Modularity is directly
related to the criteria corresponding to product revision.  Adding agents
is therefore good for maintainability, flexibility and testability.
Modularity is also related to the criteria "product transition" and in
particular portability and reusability.

7.2.2. The case study ECOM

We have applied the above generic QOC space to the case of ECOM. For example, while
designing the hierarchy of figure 5, we addressed the question about the management of
the Interpersonal Control access. Do we need an agent to manage the Interpersonal
Control access. If not, it is then managed by the root agent. The corresponding QOC
space is described below:

Q2: Management of the Interpersonal Control access?
O1: By the root agent
O2: A dedicated agent, son of the root

Q2: Management of 
the Interpersonal 
Control access?

O: By the root
  agent

O: A dedicated 
agent, son of the 
root

C: Maintainability

C: Flexibility

C: Testability

C: Portability

C: Reusability

C: Correctness

C: Interoperability

C: Reliability

C: Efficiency

C: Integrity

C: Usability

Product 
transition

Product 
revision

Product operations

Same question arises about the management of an established connection. In this
particular case, having a dedicated agent per connection is an easy way to handle
different connections at a given time.  This criteria is added to the list of software criteria.



Q3: Management of an 
established connection?

O: By the root
  agent

O: A dedicated 
agent, son of the 
root

C: Maintainability

C: Flexibility

C: Testability

C: Portability

C: Reusability

C: Correctness

C: Interoperability

C: Reliability

C: Efficiency

C: Integrity

C: Usability

Product 
transition

Product 
revision

Product operations

C: Support use of 
diverse connection 
types

References
[McCall 77]
J. McCall. Factors in Software Quality; General Electric Eds., 1977.

[Nigay, Coutaz 92]
L. Nigay and J. Coutaz. Document D18, BRA AMODEUS 1, 3066, 1992.

[Nigay 94]
L. Nigay. Conception et Modélisation logicielles des systèmes interactifs : application

aux interfaces multimodales. Thèse de doctorat de l'Université Joseph Fourier,
Grenoble, Janvier, 1994.



Appendix A: Definition of McCall factors

Factor Definition
Correctness Extent to which a program satisfies its specifications and

fulfils the user’s mission objectives.
Efficiency The amount of computing resources and code required by a

program to perform a function.
Flexibility Effort required to modify an operational program.
Integrity Extent to which access to software or data by unauthorized

persons can be controlled.
Interoperability Effort required to couple one system with another.
Maintainability Effort required to locate and fix an error in an operational

program.
Portability Effort required to transfer a program from one hardware

configuration and/or software system environment to another.
Reliability Extent to which a program can be expected to perform its

intended function with required precision.
Reusability Extent to which a program can be used in other applications-

related to packaging and scope of the functions that programs
perform.

Testability Effort required to test a program to insure it performs its
intended function.

Usability Effort required to learn, operate, prepare input, and interpret
output of a program.

Appendix B: Classification of McCall factors

• operational characteristics (product operations);
• ability to support changes (product revision); and
• capacity to adapt to new environments (product transition).



aaa


