
The AMODEUS Project
ESPRIT Basic ResearchAction 7040

AMODEUS Partners:
MRC Applied Psychology Unit, Cambridge, UK (APU)

Depts of Computer Science & Psychology, University of York, UK. (YORK)
Laboratoire de Genie Informatique, University of Grenoble, France.(LGI)
Department of Psychology, University of Copenhagen, Denmark. (CUP)
Dept. of Computer & Information ScienceLinköping University, S. (IDA)

Dept. of Mathematics, University of the Aegean Greece (UoA)
Centre for Cognitive Informatics, Roskilde, Denmark(CCI)

Rank Xerox EuroPARC, Cambridge, UK.(RXEP)
CNR CNUCE, Pisa Italy (CNR,CNUCE)

CERD Preliminary Modelling Report from the PAC perspective

Nigay, L., Salber, D. & Coutaz, J.

LGI-IMAG

15th May 1994

Amodeus Project Document: SystemModelling/IR9

2

CERD Preliminary Modelling Report from the PAC perspective

Summary: This document is an early analysis of the CERD exemplar performed
from the PAC-Amodeus perspective. It is not self-contained: knowledge of the
PAC-Amodeus modelling approach is necessary for a good understanding of the
CERD description in terms of the PAC concepts.

Design issues addressed in this report:

• design issue 1: Awareness of pending messages

• design issue 2: Software design of proactive feedback for flights selection

• design issue 3: Syntax of commands

• design issue 4: Assign a code to a flight

• design issue 5: Scribble line: multimodal output

• design issue 6: Undo a request sent after clicking confirm

• design issue 7: Two dedicated screens: one for the display, one for the
operations

• design issue 8: Direct manipulation and one single screen

• design issue 9: Two-handed interaction

Awareness of pending messages

There are three categories of messages, from the highest priority to lowest one:
Warnings, Special Event and Data Change. All the messages are displayed one
after an other in the message area. To display the next message in the queue, the
user has to touch the message area. The number of messages key next to the
message area displays the number of all pending messages (including the current
one). There is no indication of the categories of the pending messages. Thus, the
user is not aware of possible waiting messages which have a higher priority than
the current one.

We therefore propose three solutions. These solutions present three levels of
informative display:

a) The simplest solution shows the user if there is a pending message with a
higher priority than the current one. To make this information perceivable by the

3

user, different possibilities are available: blinking the number of messages key,
adding a small icon next to the number of messages, highlighting the key. This
design decision is linked to the importance of the role of the messages for the
ATCO.

b) At any time, the system displays the number of pending messages for each
category. Three display zones are therefore necessary instead of one. To gather
this information in a synthetic way, a status man icon can be used.

Nw Warning
Ne Special Event
Nd Data Change

Nw Warning
Ne Special Event
Nd Data Change

Nw Warning
Ne Special Event
Nd Data Change

(Nw=0) et (Ne=0) et (Nd>=0) (Nw=0) et (Ne>0) et (Nd>=0) (Nw>0) et (Ne>=0) et (Nd>=0)

Figure 1. The status man showing the number and category of pending messages.

c) The system allows the user to scroll the list of queued messages. The scrollable
list contains all the messages which have not been acknowledged. Two arrows
next to the message area allow up and down scrolling. The messages in the list are
ordered according to their priority. Once a message is acknowledged (by clicking
on it in the message area), it is then discarded from the list.

Message Area

Figure 2. The scrollable message area.

PAC D1 Awareness of pending messages

PAC Architecture modelling

For each of the above solutions, the Functional Core Adapter (FCA) receives the
messages from the network which is part of the Functional Core (FC). It
maintains three queues of messages according to the categories. Thus, the FCA
adapts the data from the FC to make them perceivable by the user through the
Dialogue Controller (DC). Within the DC, a dedicated PAC agent, “Message”,
manages the display of the presentation of the messages. At the arrival of a
message inside the FCA, the FCA notifies the Message agent through its
abstraction part.

For solution a), the abstraction part of the Message agent maintains the number of
messages of each category. Moreover, the abstraction part maintains the category

4

of the current displayed message. This agent is then able to notify the user when
there is a pending message with a higher priority than the current one.

For solution b), the abstraction part of the Message agent maintains the same
information as in solution a) and its control part performs the mapping function
between the current state (number and categories of pending messages) and the
status man icon to be displayed.

For solution c), the abstraction part of the Message also contains the contents of
the messages. This design choice is guided by efficiency reasons: since the list of
messages is now scrollable, the messages contents should be maintained by the
agent. The presentation part of the agent now contains two supplemental buttons
to allow up and down scrolling.

Syntactic Cement

Message

DIALOGUE CONTROLLER

FUNCTIONAL CORE
ADAPTER

Message queues

Dispatcher

Network

FUNCTIONAL CORE

Abstraction
(different for a, b et c)

Presentation
(different for a, b et c)

Figure 3. Architecture for solutions a, b and c

5

Software design of proactive feedback for flights selection

When an operation is chosen by the user, the keys representing available flights
for this operation are highlighted. This is an example of proactive feedback and
has some influences over the software architecture. Figure 6 shows the message
passing inside the hierarchy of PAC agents to implement proactive feedback. The
FCA maintains the list of available flights. When an operation is initiated by the
Commands Palette agent, the corresponding operation is sent to the syntactic
cement agent. The abstraction part of this agent then asks the FCA for the
available flights by sending a rule to compute the valid flights for this operation.
After receiving the list of flights, the agent asks the matrix agent to highlight the
corresponding flights. The control part of the matrix agent maintains a table to
map flights identifiers to the flight PAC agents. This table is used to dispatch the
highlight message to the target flight PAC agents.

Syntactic
Cement

Flights
Matrix

Flight 1

Commands
Palette

Flight N

[3]

[2]

[1]

[4]

DIALOGUE CONTROLLER

FUNCTIONAL CORE
ADAPTER

List of
flights

[6]
[6]

[5]

[6]

[1]: Touching a button
[2]: Selection of an operation <op>
[3]: Ask for the available flights given to <op>
[4]: List of available flights
[5]: List of available flights
[6]: Highlight

Flight PAC

6

Figure 4. Message passing to implement proactive feedback

PAC I1 Proactive feedback for flights selection

Syntax of commands

In all four tasks (Swap, Reposition, Resequence, Assign), the syntax of
commands is strictly defined: command followed by parameters. We propose to
extend this syntax to allow the parameters to be specified before the command. To
do so, we don’t need to modify the above hierarchy of agents (see Figure 6). If a
flight is first selected, the syntactic cement agent will maintain the selection in its
abstraction part. When the operation is then selected, the cement agent will
complete the command.

PAC D2 The syntax of commands should allow more flexibility

Assign a code to a flight

The assignment of a code to a particular flight (Assign command) is an example
of a passive command: it is therefore managed within the DC and doesn’t involve
the FC. The assignment command is a case of semantic repair. The concept of
code assigned to a flight is not a task-domain concept and is not present in the FC.
Since there are only three codes in use, the three choices can be presented as a
pop-menu available by clicking the Assign button. Figure 7 shows the message
passing within the architecture when the user assigns a code to a flight.

7

Syntactic
Cement

Flights
Matrix

Flight 1

Commands
Palette

Flight i
"Assign"

button
+

popup
choice

Chosen flight
(touch)

[1]

[2]

[3]
[4]

[5]

[1]: selection of the assign operation + value of the popup choice
[2]: selection of this flight (i)
[3]: selection of flight i in the matrix
[4]: assign value of flight i in the matrix
[5]: assign value of this flight (i)

Figure 5. Message passing for the assignment command: only the DC is involved.

PAC I2 Assignment of codes to flights

PAC D3 A popup menu of codes would avoid a dedicated screen to assign a
code to a flight

Scribble line: multimodal output

The scribble line shows commands as they are specified. For example the
reposition operation requires two flight parameters. They are displayed both in the
scribble line and highlighted in the matrix. Two output interaction languages are
used simultaneously using the same output device (i.e., screen). The same piece of
information (i.e., the selected flights) is rendered at the same time using two
different languages: it is therefore a case of redundancy. The rendering
redundancy suggests that the piece of information is located in a single location in
the architecture (i.e., abstraction part of an agent). A good place to store this

8

information is the abstraction part of the syntactic cement agent. This agent
handles the scribble line and is also a common father agent of both the Commands
Palette and Matrix agents.

Syntactic
Cement

Flights
Matrix

Flight 1 Flight i...........................

P

P

AL 3233

Highlight
Flight AL 3233

Figure 6. Multimodal output: rendering redundancy
while specifying the Reposition command.

PAC I3 Multimodal output for rendering the construction of a command

Undo a request sent after clicking confirm

When a command is confirmed by clicking the Confirm button, it is then sent
over the network through the FCA and cannot be cancelled anymore. To alleviate
this problem and allow the cancellation of a confirmed command, the FCA
maintains the last request sent over the network. If the request needs to be undone,
the FCA computes the corresponding cancellation request according to the stored
request. This mechanism provides a one-level undo. A multi-level undo could be
realised by maintaining an history of requests inside the FCA.

PAC D4 Add undo facility

9

Two dedicated screens: one for the display, one for the
operations

When specifying the parameters of a command, a new screen is displayed, thus
replacing the flights matrix. To avoid this screen swapping and to enhance screen
stability, a second touch panel display device can be used. The main display
always shows the matrix of flights. The second one is dedicated to the
specification of commands. This disposition allows the user to be always aware of
the most relevant information (i.e., the matrix of flights). The agent hierarchy of
the DC is the same as shown on figure 7. The choice of the display device to
render the presentation of an agent is performed inside the Low Level Interaction
Component (LLIC) of the PAC-Amodeus model. Since there are two output
devices, the system is then multimodal for output. This two-display configuration
is similar to the CUBRICON system described in [Neal 91].

PAC D5 A second display device to make the flight matrix perceivable by the
user at any time

Direct manipulation and one single screen

Another way to insure screen stability is to allow direct manipulation on the
flights matrix. For reposition and resequencing operations, the user can drag
directly on the screen the flights to be moved within the matrix. To prevent
manipulation errors, the user has to press a button to enter the “drag mode”. The
current mode (i.e., drag or not) must be perceivable by the user. For example, the
mode change can be performed by clicking a toggle button with two visible states
(e.g., the mode is shown by the label of the button). Once the user has performed
the modification on the matrix by dragging, he can either confirm or cancel by
touching the appropriate button. This will return the system to normal mode (as
opposed to drag mode). This solution leads to a simplified agent hierarchy. The
agent sub-hierarchy dedicated to the management of the screens which allow the
user to specify the parameters of commands is no more relevant. Instead, the
specification of the parameters is handled by the matrix agent and its son agents.
Each son agent handles a given matrix element. This agent decomposition
supports a simple implementation of direct manipulation.

10

Syntactic
Cement

Flights
Matrix

Flight 1

Message Commands
Palette

Inspection
Commands

Palette

Screen
Management

Handles direct
manipulation

Flight N

Figure 7. With direct manipulation,
the screen management sub-hierarchy are no longer required.

PAC D6 Allow direct manipulation of the flights matrix

Two-handed interaction

“Direct manipulation interfaces using a pointing device could be more efficient
with the addition of a second pointing device.” [Chatty 94] Starting from this
statement, we can apply a two-handed interaction in the design of CERD. It is
particularly suitable for the Swap command. Real-world manipulation and
swapping of objects involves two handed actions. To swap to flights, the user
simultaneously selects the two flights using both hands and moves them.
Nevertheless, the current touch screen technology doesn’t support such two-
handed interaction: for two simultaneous inputs, the touch screen will provide two
x values and two y values instead of two (x, y) couples. Thus, two simultaneous
inputs define four (x, y) combinations and therefore four points on the screen.
From a software architecture point of view, the handling of two parallel inputs is
easy to handle because independent agents in the hierarchy are able to function
simultaneously.

PAC D7 Two-handed interaction for Swap operation

11

References

[Chatty 94]

S. Chatty, Issues and Experience in Designing Two-Handed Interaction , CHI’94
Conference Companion, Boston, USA, pp. 253-254.

[Neal 91]

J.G. Neal and S. Shapiro, Intelligent Multimedia Interface Technology, Intelligent
User Interfaces, J.Sullivan and W.Tyler (eds.), ACM Press, Frontier Series,
Addison-Wesley publisher, 1991, pp. 11-43.

