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Abstract
This document discusses architecture modelling for the software aspects of interactive
systems. The literature shows a wide variety of such models revealing distinct goals,
applicability, or scientific beliefs. In order to facilitate the presentation, a simple taxonomic
framework is introduced based on the nature and the granularity of the entities that models
use as well as on the extent to which models are able to support a particular set of
requirements. The dimensions of the MSM framework are used as a set of such criteria to
evaluate and compare two categories of architectural models: the conceptual multi-agent
models such as GIO, PAC and MVC, and the implementational models such as Seeheim,
Arch and PAC-Amodeus.
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1. Introduction
This document discusses architecture modelling for the software aspects of interactive
systems. The literature shows a wide variety of such models revealing distinct goals, usages,
or scientific beliefs. In order to organize our current knowledge and to clarify our
understanding about architectural issues, we propose a dimension space that may be useful
for characterizing architectural models of interactive systems. This minimal 4-D space is
presented in Section 2.

Most of architectural models are driven by the Graphical User Interface (GUI) paradigm. In
parallel with the development of the GUI technology, significant progress has been made in
natural language processing, computer vision and gesture analysis. Systems integrating these
techniques as multiple modalities open a complete new world of experience [Krueger 90].
But as pointed out in [Blattner et al. 90], differences of opinion still exist as to the meaning of
the term “multimodal”. Working paper “Amodeus 7040, SystemModelling/WP4” defines the
MSM framework for characterizing interactive systems including multimodal user interfaces.
This design space, which adopts a system perspective, identifies issues that should be
covered by software architecture studies. Section 3 summarizes the main points of the MSM
framework.

Architectural models for interactive systems all rely on similar foundations. These
fundamental principles are presented in Section 4.  Sections 5 and 6 are dedicated to the
description of significant architectural models in the field. Section 5 is concerned with the
conceptual approaches to architectural issues whereas Section 6 presents models motivated
by implementation issues. Whether they be concept-driven or implementation-driven, these
models cover the organization of interactive systems considered as a whole.

The “holistic” models should be opposed to the specialized architectural models that focus on
particular types of modalities and techniques such as computer graphics, computer vision and
natural language processing. In a forthcoming Amodeus working paper, we will discuss the
peculiarities and commonalities of the special purpose architectural models and show how
they fit into the holistic frameworks.

2. A dimension Space for Architectural Models
An architectural model identifies entities and describes how these units relate to each other.
The nature of the entities depends on the goal or the perspective adopted by the designers of
the model. In particular, a software architecture model may be conceptual or aimed at
implementation:

• within a conceptual model, an entity denotes a concept, for example the notion of
dialogue control or that of an interactor [Duke et al. 92]. The model then shows how
the concepts relate to each other in the design space;

• within an implementation model, an entity corresponds to a software component, for
example the dialogue controller. The model then specifies the relationships between the
components. Such relationships are driven by practical software engineering
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considerations such as communication protocols and correspondence with reusable
code such as libraries (e.g., Xlib and Motif).

Orthogonal to the perspective adopted, is the granularity of the entities: “How big is a
chunk?” For example, what does the notion of dialogue control cover? What is an interactor?
Can these notions be refined in terms of more elementary concepts?

Another interesting dimension is how well a model supports “quality criteria”. Quality
criteria are useful notions for evaluating a particular model against specific requirements.
They can be subdivided into a number of ways to account for distinct classes of
requirements. One category includes software engineering factors such as reusability and
maintainability; another class would cover the notion of usability as described in [Abowd et
al. 92] ; yet another one would characterize links with a theory as the theory of interactors
investigated within Amodeus [Duke et al. 93]; finally,  the dimensions of the MSM
framework could also serve as a set of criteria for evaluating architectural models [Coutaz et
al. 93a, 93b].

Whether it be conceptual or implementational, whether it be fine grained or not, whatever the
quality criteria it is able to support, a model:

• may either serve as a guide during the software design process of an interactive system,
or

• be used a posteriori as a reference to evaluate a particular software design or to reason
about a particular solution within the design space provided by the model.

usage

granularity

nature 
of the entities

criteria supported

a posteriori

a priori

MSM
framework

usability

Software
engineering

theory gap

high

low

concepts modules components

Figure 1: A minimal dimension space for characterizing software architecture models.

Figure 1 summarizes our minimal dimension space for characterizing software architecture
models for interactive systems. It includes, the following four dimensions:

• the nature of the entities involved: do the entities represent concepts, software
components, levels of abstractions, a combination of these, etc.?



6

• the granularity of the entities: what is the level of refinement supported by the model?

• the usage of the model: can it be used as a driving guide during the design process of
an architectural solution, or should it be used as a reference to assess the soundness of a
particular architectural design?

• the quality criteria: how good is the architectural model to support quality
requirements? As discussed above, quality requirements illustrate multiple perspectives
from software engineering to HCI factors, and theoretical issues. Following on the
MSM design framework developed within Amodeus2, we will evaluate architectural
models against the MSM dimension.

3. Brief Overview of the MSM framework
The MSM framework is a dimension space that should help reasoning about current and
future Multi-Sensori-Motor systems (MSM). As shown in Figure 2, this problem space is
comprised of 6 dimensions. The first two dimensions deal with the notion of communication
channel: the number and direction of the channels that a particular MSM system supports. A
communication channel covers a set of sensory (or effector) means through which particular
types of information can be received (or transmitted) and processed.

The other four dimensions of the MSM framework are used to characterize the built-in
cognitive capabilities of the system: the interpretation and the rendering functions. The
interpretation function covers the sequence of transformations applied to inputs received
through sensors. In the other direction, internal information (e.g., the system state) is
transformed by the rendering function to make it perceivable to the user via effectors. The
interpretation and the rendering functions are both characterized by four intertwined
ingredients: level of abstraction, context, fusion/fission, and parallelism.

Number of channels 
along one direction

Channel 
direction

1
2

3

Fusion/Fission

no

yes

Levels of 
Abstraction

raw high

Context

Parallelism

none
physical

task
task cluster

Figure 2: The MSM Framework: a 6-D space to characterize multi-sensory-motor systems.
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The level of abstraction expresses the degree of transformation that the interpretation and
rendering functions perform on information. It also covers the variety of representations that
the system supports, ranging from raw data to symbolic forms. For a given digital input
channel, the interpretation function can be characterized by its power of “abstracting” raw
data into higher representational expressions. The rendering function is characterized by the
level of abstraction it starts from to produce perceivable raw information through output
digital channels (concretization phenomenon).

The capacity of a system to abstract or to concretize along a channel may vary dynamically
with respect to “contextual variables”. Contextual variables are like cognitive filters. They
form a set of internal state parameters used by the representational processes to control the
interpretation/rendering function. Context covers the notion of mode as defined by
Thimbleby [Thimbleby 90].

Fusion refers to the combination of several chunks of information to form new chunks.
Fission refers to the decomposition phenomenon. Fusion and fission are part of the
abstracting and concretization phenomena.

Parallelism at the interface may appear at multiple grains: at the physical level, at the
elementary task level (i.e., the command level), and at the task level. For input, parallelism at
the physical level allows the system to probe the user’s physical actions through multiple
sensors simultaneously. For output, the system is able to express a state change through
multiple effectors simultaneously. Parallelism at the elementary task level allows the user to
express multiple commands simultaneously or in an interleaved way. A task is a cluster of
tasks that structures the interaction space. Parallelism at the task level is, in general,
supported through interleaving between different clusters or via true parallelism between
commands that belong to distinct clusters.

Having defined a minimal dimension space for reasoning about software architecture models,
we are now able to present a number of holistic architecture models and analyze them along
this framework including the MSM framework.

4. The Foundations of Holistic Models
All of the holistic architectural models have adopted the distinction of concerns between the
entities that model the task domain and those involved in the perceivable portion of the
system.

From a conceptual linguistic perspective, this distinction corresponds to the notions of
semantics and pragmatics on one hand, and the syntactic, lexical and articulatory issues on
the other hand. From a software engineering perspective, the distinction between task domain
and interpretation/rendering opens the way to code re-usability and code maintainability. In
particular, the entities that depend on the task domain define a software component, the
functional core, that can be reused with different interpretation and rendering functions.
Similarly, interpretation/rendering entities define a software component, the user interface,
that can be maintained without modifying the functional core. The identification of these two
components has helped in the emergence of the UIMS technology.
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Figure 3 shows a software interpretation of the conceptual consensus. It is characterized by a
coarse granularity of the components, and the model can be used during the design phase as
well as for evaluation. With regard to software quality criteria, it clearly stresses
maintainability and iterative design. As far as the MSM criteria are concerned, the foundation
model:

• implicitly supports the notion of communication channels within the user interface,

• explicitly identifies two levels of abstraction: the high level exemplified by the
functional core and the low level within the user interface,

• says nothing about context, parallelism and fusion/fission phenomena.

Functional Core User Interface

Interactive System

Figure 3 : The foundation model suited to software architecture modelling.

In summary, the conceptual framework which introduces two notions (task domain and user
interface), has opened the way to a number of interpretations. One of them, adopted by the
software engineering community, is a 2-component model that supports the software
engineering principles of maintainability and reusability. Although the foundation model is
characterized by a coarse granularity, the concepts it introduces have paved the way 1) to
conceptual architectural models, such as MVC [Krasner et al. 88], PAC [Coutaz 87], GIO
[Faconti 93, Paterno 93] and the Lisbon model [Duce et al. 91], and 2) to implementational
models such as Seeheim [Pfaff 85], Arch [Arch 92], and PAC-Amodeus [Nigay et al. 91b].

4. Conceptual Architectural Models: MVC, PAC, GIO, Lisbon
MVC, PAC, GIO, and the Lisbon model introduce two additional features to the notions of
task-domain and user interface: the concept of concurrency and that of level of abstraction.
These notions are conveyed by a set of cooperating agents, interactors, and objects.

In this section we clarify the relations between the concepts of agent, interactor, and object.
Then we show how agents support the separation of concerns with the notion of perspective.
We close the section with the evaluation of MVC, PAC, GIO and Lisbon with regard to the
MSM framework.

4.1. Agents, Interactors, Objects
An agent is a complete information processing system: it includes event receivers and event
transmitters, a memory to maintain a state, and a processor which cyclically processes input
events, updates its state, and may produce events or change its interest in input event classes.
Thus an agent is a unit of competence which operates in parallel and in a coordination with
other agents. The user is such an agent. A formal definition of the notion of agent can be
found in [Abowd 91].



9

Our view of the concept of agent is one perspective of the more general definition used in
distributed Artificial Intelligence (A.I.). In A.I., agents may be cognitive or reactive
depending mainly on their reasoning and knowledge representation capabilities [Demazeau
91]. A cognitive agent is enriched with inference and decision making mechanisms to satisfy
goals. At the opposite, a reactive agent has a limited computational capacity to process
stimuli. It has no goal per se but a competence coded (or specified) explicitly by the human
designer. In the following discussion, we will not make the distinction between cognitive and
reactive agents although current models and formalisms developed for the software design
and verification of user interfaces consider reactive agents only.

Interactors are the agents of an interactive system that communicate with the user directly.
They provide the user with a perceptual representation of their internal state [Duke et al. 92,
Duke et al. 93] as well as a means to modify this state. Interactors are also coined as
“interaction objects”.

An object is a generic term that covers the notion of computing entity with a local state. It
can either be viewed as a concept or as the technical structure that underpins the object-
oriented programming paradigm. In the following discussion, we will consider an object as a
generic concept. An agent is a kind of object. Unlike some objects that may be passive (i.e.,
manipulated only), an agent is an active object. The Arch and PAC-Amodeus models
presented in Section 5 illustrate the combined presence of passive and active objects.

In summary, an interactor is an agent that interacts with the user directly. An agent is an
active object, and an object is a state-based process. The following expression clarifies the
relationships between the sets of objects, agents and interactors:

an interactor is-an  agent is-an  object1

The conceptual models described in this paper all view an interactive system as a set of
cooperating agents. In addition, MVC, PAC and GIO2 refine agents into a number of
perspectives.

4.2. Agents, Perspectives and Separation of Concerns
Basically, perspectives within an agent correspond to the notions introduced by the
foundation model: task domain and user interface.

In MVC, an agent is modelled along three perspectives: the Model, the View, and the
Controller. A Model defines the functional competence of the agent (i.e., its task-domain).
The View corresponds to the rendering function. It defines the perceivable behavior of the

                                      
1 Another terminology could be adopted: an agent would cover the A.I. definition and an
interactor would be the reactive AI agent. We need a name to denote interactors that
communicate with the user directly. (I/O object and logical device are not satisfactory: an
object may be passive and, the definition of logical device covers the motivations behind the
notion of interactor.)
2 “GIO” stands for Graphical Interaction Object as defined by Paterno in [Paterno 93]. We
have introduced the term “GIO model” to denote the approach described by Faconti and
Paterno. We hope that we do not make injustice to their work by doing so!
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agent. The Controller denotes the interpretation function of inputs. The View and the
Controller define the user interface of the agent, i.e., its behaviour with regard to the user.

PAC conveys similar ideas: a PAC agent has a Presentation perspective (its rendering and
interpretation functions), an Abstraction (its task domain competence), and a Control. The
Control is in charge of communicating with other agents as well as bridging the gap between
its abstract and user interface facets.

In GIO, an agent possesses four perspectives : the Collection and the Abstraction facets
define the “functional core” aspect of the agent for input and output respectively; the
Measure and the Presentation cover the user interface side of the agent for input and output
respectively.

GIO

Collection Abstraction

Presentation Measure

MVC

Model

View Controller Presentation

Abstraction

Control

PAC

Figure 4: Equivalence between the perspectives of MVC, PAC and GIO agents. Arrows indicate the directions
of inputs and outputs.

Figure 4 summarizes the commonalities and the differences between MVC, PAC and GIO:

• an MVC “View” is equivalent to a GIO “Presentation”.

• an MVC “Controller” is equivalent to a GIO “Measure”.

• an MVC “Model”  is equivalent to a PAC “Abstraction” is equivalent to a GIO
“Abstraction, Collection” couple.

• an MVC “View, Controller” couple is equivalent to a GIO “Presentation, Measure”
couple is equivalent to a PAC “Presentation”.

• a PAC “Control” has no explicit correspondence with the MVC facets. With regard to
GIO, it seems to cover the internal coordination between the components of an agent as
well as the notion of “Controller” introduced in [Faconti 93] to control the behavior of
an agent.

 In the Lisbon model, agents do not have perspectives but are organized as specialized
categories to model the rendering and interpretation functions.
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4.3. Conceptual multi-agent models and the MSM Framework
In this paragraph, the discussion is organized along the dimensions of the MSM framework:
communication channels, levels of abstraction, context, fusion and fission, and parallelism.

4.3.1. Communication channels
All of the models considered in our discussion stress the fact that an agent may communicate
with multiple agents. Agents are multichannel capabilities. However, not all of the multi-
agent models make explicit the communication channels their agents support. For example,
MVC does not say how communication occurs between the agents of an interactive system.
The question is left opened until implementation.

In PAC, on the other hand, the Control facet of an agent supports communication in two
ways: first, it serves as an explicit bridge between the two facets it serves (the Abstraction
and the Presentation may use different formalisms as well as distinct time basis); second, it is
used as the switchboard of the agent: it receives inputs and outputs from other agents. At the
opposite of GIO, however, PAC does not make explicit how inputs and outputs are processed
and dispatched within the agent.

In GIO, input and output channels are clearly expressed. For example, the Measure of an
agent is modelled as the local process specialized in processing inputs from lower level
agents. The Collection has a similar role for processing inputs from higher levels of
abstraction. The Presentation and the Abstraction are the output channels for lower levels and
higher levels of abstraction respectively.

4.3.2. Levels of Abstraction
Information acquired by interactors is transformed by a population of agents before reaching
the functional core. This transformation process, called the interpretation function in the
MSM framework, defines the capacity of abstracting of the user interface. In the other
direction, the rendering function corresponds to the capacity of the user interface to
concretize information from to functional core into the formalism acceptable for interactors.
The successive steps of such transformations define levels of abstraction. In the conceptual
architectural models considered in our discussion, abstracting and concretizing are performed
by agents organized into levels of abstraction.

Within GIO, levels of abstraction are defined in two ways: within an agent and in the form of
a composition mechanism.

• A GIO agent stresses a clear distinction between the rendering and the interpretation
functions. These functions operate along a 2 step process. Each step defines a level of
abstraction within the agent. For rendering, information from higher levels of
abstraction is received by the Collection and delivered to lower levels by the
Presentation. For interpreting, the Measure receives information from lower levels
whereas the Abstraction communicates with higher levels.

• GIO agents can be composed into more powerful, abstract agents with composition
operators such as the interleaving operator [Faconti 93]. By doing so, an agent is
defined as a hierarchy of agents composed of a parent and a set of interleaved child
agents.
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PAC and MVC adopt a similar approach for modelling levels of abstraction. Like GIO, they
do not make explicit the nature of these levels. The Lisbon model, on the other hand,
introduces classes of agents, i.e. Conceptual objects (CO’s), Interaction Objects (IO’s), and
Transformer Objects (TO’s) as an indication of what these levels might be.

In the Lisbon model, CO’s are “the user interface accessible representation of an object the
functional core wishes to make visible” [Duce et al. 91]. In the user interface portion of an
interactive system, CO’s are the proxies of the task domain concepts manipulated by the
functional core. IO’s support the translation process between CO’s inputs and outputs and
low level input and output devices. As in GIO, “Composite IO’s may be formed from single
IO’s to handle arbitrarily complex threads of dialogue” [Duce et al. 91].  TO’s provide the
basic mechanism for managing the relations between different objects of the user interface.
Examples of such relations include constraint management to maintain consistency between
IO’s, context switching between dialogue threads, integrity mapping between CO’s and IO’s,
etc.

4.3.3. Context
The MSM framework does not provide a sound definition of the notion of context. However,
an agent, which is a state-based processing capability, illustrates one possible class of
context.

 4.3.4. Fusion and Fission
The composition mechanism within MVC, PAC, and GIO was primarily introduced for the
expression of levels of abstraction. One side effect of this mechanism is that composition
provides a sound foundation for fusion and fission. Fusion and fission are part of the internal
processing capabilities of an agent.

4.3.5. Parallelism
As stated above, an agent is a processing unit that can operate in parallel with other agents. It
results from multi-agent architectures that multiple interpretation and rendering activities can
take place simultaneously.

4.4. Summary
In summary, if we refer to our simple classification scheme of Section 2, MVC, PAC, GIO
and the Lisbon models are all driven by conceptual considerations. With regard to
granularity, all of them manipulate the notion of agent although they refine an agent in
different ways.  As shown in Figure 4, PAC, MVC and GIO differ by the granularity of the
description of an agent. GIO, which explicitly decomposes the abstract and the concrete sides
of an agent into two facets appears as the more fine grained model. PAC, on the contrary is
more macroscopic.

MVC, PAC, GIO and the Lisbon model, all pass the MSM criteria successfully. They all
provide conceptual mechanisms for the MSM dimensions as well as for the foundation
principle:

• distinction between concrete rendering from abstract functionality,

• support for parallel activities and multiple I/O channels,
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• contextual transformation of information from low level devices to high level task-
domain concepts and vice versa (abstraction and concretization).

Although they support similar mechanisms, multi-agent models differ on the focus and the
means:

• The Lisbon model expresses the abstraction/concretization process by introducing
specialized agents. In MVC, PAC and GIO, these transformations are performed by
unmarked agents.

• Whereas PAC, MVC and GIO stress the distinction between rendering issues and
conceptual functionalities at multiple levels of abstraction, these notions are blurred
within the Lisbon model.

• Contrary to PAC and the Lisbon model, MVC has no explicit notion of arbitrator for
expressing the relationships and the coordination between the agents.

Because they are conceptual, MVC, PAC, GIO, and the Lisbon model do not impose any
implementation technique. However they can be easily expressed with object-based
programming languages. For example, within the Smalltalk environment [Goldberg 84], an
MVC agent class is implemented as three Smalltalk classes (one class per facet) that are
connected through explicit message passing. Depending on the programming tool at hand, a
PAC agent may be implemented either as one module, or a single object class, or even as in
Smalltalk as a cluster of three classes. One can refer to [Paterno 93] for the implementation
of GIO agents in terms of an object-oriented language.

The Seeheim, Arch, and PAC-Amodeus models presented in the next section are more
concerned with implementation issues than the multi-agents models considered above.

5. Implementational Architectural Models: Seeheim, Arch, PAC-Amodeus

5.1. Seeheim
The term “Seeheim model” originated at a workshop in Seeheim, Germany [Pfaff 85]. As
shown in Figure 5, this model refines the user interface portion of an interactive system into
three components: the Application Interface3, the Dialogue Control and the Presentation. The
role of each component is roughly described as the semantic, syntactic and lexical
functionalities of the user interface. The Application has the same definition as the
Functional Core: it models the domain-specific concepts (i.e., the semantics), whereas the
Dialogue Control and the Presentation deal with syntactic and lexical issues respectively. The
Application Interface defines the view that Dialogue Control has about the Application. If we
refer to the Lisbon model, CO objects may be gathered within that component.

                                      
3 “Application Interface” and “Functional Core Interface” are equivalent expressions.
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Interactive System

User Interface

Figure 5: The Seeheim Model.

The Seeheim model is based on notions (semantics, syntax, and lexicon) which are well
understood by computer scientists. Therefore, it is a useful framework for teaching how to
devise the design process of an interactive system as well as how to organize its software
architecture. Design methods such as CLG [Moran 81] and that of Mark Green [Green 85]
and Foley and Van Dam [Foley 84], which advocate a top-down design approach (from the
definition of the domain concepts to the identification of the interaction techniques used in
the presentation) are consistent with the linguistic interpretation of the Seeheim model. With
regard to software tools, the Seeheim model has opened the way to the transfer of knowledge
from automatic compiler generation to automatic user interface generation. The result has
been an emergence of a wide variety of rapid prototyping tools.

Unfortunately, experience has shown that user interface designs based on the linguistic
approach presented major limitations. By nature, a language view puts the emphasis on the
form, and is totally oblivious to the dynamics. This prejudice is acceptable for a compiler
which processes fully specified static input expressions.

As expressed by the MSM framework, the form of an input expression may evolve in parallel
with the production of an output expression; multiple input expressions may be specified
simultaneously. Unlike a compiler which performs a well-defined sequence of processing,
the user interface must, in general, support parallelism. In addition, in order to augment the
quality of domain-specific feedback, it should allow for partial input expressions to be
interleaved with the production of output expressions; it should support a flexible granularity
for input and output expressions; it should support multithread dialogues in order to allow the
user to simultaneously handle several threads of reasoning as well as to behave in an
opportunistic manner [Hayes-Roth 79].

Thus, applying a centralized sequential linguistic view on top of the Seeheim model, makes
impossible the satisfaction of some of the most fundamental user-centered requirements. In
addition, the Seeheim model does not provide software designers with any help to perform
the unavoidable and difficult engineering trade-offs. Such trade-offs affect the optimization
of the development process as well as the quality of the end-product. The Arch model and its
companion, the slinky metamodel, aim at filling the gap.

5.2. The Arch Model
The Arch model results from the work of the user interface tool developers group [Arch 92].
Its purpose is to provide developers with a framework for understanding engineering trade-
offs. It is not intended to be prescriptive but rather usable as a reference for evaluating a
particular candidate run-time architecture. The authors observe that “user interface
developers sometimes find both the application domain functionality4 and the User Interface

                                      
4 “Application domain functionality”, “Application”, and “Functional Core” are equivalent
expressions.
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Toolkit(s) to be existing constraints upon the development of a user interface... For this
reason, the domain software and the User Interface Toolkits form the two bases of the Arch
model.” [Arch 92, pp. 34]. As shown in Figure 6, the Arch model is a refinement of the
Seeheim model where engineering reality has been injected. In addition, the Arch model
makes explicit the nature of the information that cross the boundaries between the
components.

5.2.1. The Components of the Arch Model
The Domain-Specific Component and the Domain Adaptor Component are different terms
for denoting the notions of Application and Application Interface introduced by Seeheim.
Architecture modelers however, have a better understanding of the role of the Domain
Adaptor5 as well as on the nature of the data exchanged between the  Domain-Specific
Component and the Domain Adaptor. These issues will be further discussed in a later
paragraph about Adaptor Components.

The Dialog Component corresponds to the Seeheim Dialogue Controller although in
Seeheim, the role of this component was limited to some obscure syntactic sequential
processing such as the combination of lexical inputs into command level abstractions. In the
Arch model, the Dialogue Component “has responsibility for task-level sequencing, ..., for
providing multiple view consistency and for mapping back and forth between domain-
specific formalisms and user-interface-specific formalisms” [Arch 92, p. 34].

The domain-specific formalism describes the entities that are exchanged with the Domain
Adaptor whereas the user-interface-specific formalism expresses semantically identical
information driven by presentation considerations. For example, the notion of temperature in
the Domain Adaptor would be represented as a real number whereas, at the presentation
level, it would be represented as the mercury height of a thermometer. The first formalism,
i.e., the real number, is suggested by computational purpose whereas the second formalism, a
mercury height, depends on the formalism provided by the Presentation component (e.g.,
graphics, voice).

The Arch model segments the Seeheim Presentation into two levels of abstraction: The
Presentation Component and the Interaction Toolkit Component. The Interaction Toolkit
Component implements the physical interaction with the end-user. The Presentation
Component “provides a set of toolkit-independent objects for use by the Dialogue
Component ...” [Arch 92, p. 34]. A toolkit-independent object is called a “presentation
object” whereas “interaction objects” refer to interaction techniques supplied by interaction
toolkits. For example, a “selector” presentation object can be implemented in the toolkit
using either a menu or radio buttons interaction objects. Therefore, the Presentation
Component acts as the second software adaptor of the Arch model.

                                      
5The “Domain Adaptor” is also called the “Functional Core Adaptor” by Nigay and Coutaz
(Nigay & Coutaz, 1991b).
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Figure 6: The components of the Arch model and their interfaces. [Arch 92]

5.2.2. The Adaptors of the Arch Model
Adaptor components, which define abstract interface machines, are useful concepts to
improve code reusability, portability, and modifiability. This subsection discusses two
instances of such adaptors in user interface software engineering: the Domain Adaptor and
the Interaction Toolkit Adaptor, which insulate the keystone component (i.e., the Dialogue
Component) from modifications in its mandatory neighbors: the Functional Core and the
Interaction Toolkit.

The Domain Adaptor Component. The Domain Adaptor Component serves as a mediator
between the Dialogue Component and the domain-specific concepts implemented in the
Functional Core [Nigay 91b]. It is designed to absorb the effects of change in its direct
neighbors. As any boundary, it implements a protocol. A protocol is characterized by
temporal strategies and by the nature of data exchanged [Coutaz 91].

A temporal strategy defines the coordinating rules for transfering information between two
communicating entities such as the Functional Core and the Dialogue Component. The
coordination may be fully synchronous or fully asynchronous or may alternate between the
two techniques. Synchronous coordination implies that the sender waits for the receiver
before its own processing can resume. In the context considered here, synchronous
coordination models the mutual control of the Functional Core and the Dialogue Component:
either one has the initiative, but the initiator is directly controlled by its partner.
Asynchronous coordination allows communicating entities to exchange information without
waiting for each other. With such a communication scheme, the Functional Core and the
Dialogue Component are two equal partners sharing a common enterprise: that of
accomplishing a task with the user.

When considering interaction styles, synchronous coordination results in single threads of
dialogue or, at best, in interleaved threads. Asynchronous coordination supports multiple
concurrent threads of dialogue: the user may issue multiple commands simultaneously (using
for example, a combination of voice and hands) while the Functional Core may have its own
processing going on.
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Exchange of data between the Functional Core and the user interface is performed through
the Domain Adaptor in terms of domain objects6. A domain object is an entity that the
designer of the Functional Core wishes to make perceivable to, and manipulable by the user.
Ideally, it is supposed to match the user’s mental representation of a particular domain
concept. It may be the case however that the Functional Core, driven by software or
hardware considerations, implements a domain concept in a way that is not adequate for the
user.

Semantic enhancement [Bass et al. 91] may be performed in the Domain Adpator by defining
domain objects that reorganize the information modeled by the Functional Core.
Reorganizing may take the form of aggregating data structures of the Functional Core into a
single domain object or, conversely, segmenting a concept into multiple domain objects. It
may also take the form of an extension by adding attributes and operators, which can then be
exploited by the other components of the user interface. In Serpent [Bass et al. 91], the
Domain Adaptor is implemented as a data base of passive objects. The data base itself is an
abstract machine whose operator allow the Functional Core and the Dialogue Component to
collect, create, or destroy entities, but these entities, which model the state of the data base,
are passive objects.

The Presentation Component. The Arch Presentation Component acts as a mediator between
the Dialogue Component and the interaction toolkit. As shown in Figure 7, Coutaz proposes
to refine the Presentation Component into two layers of abstraction: the Extension Layer and
the Interaction Toolkit Adaptor [Coutaz 91]. The Interaction Toolkit Adaptor defines a
virtual toolkit used for the expression of presentation objects. This expression is then mapped
into the formalism of the actual interaction toolkit used for a particular implementation.
Switching to a different toolkit requires rewriting the mapping rules, but the expression of the
presentation objects remains unchanged.

Extension Layer

Interaction Toolkit
Adaptor

Dialogue Component

Interaction Toolkit Component
Figure 7: Refinement of the Presentation Component.  (Coutaz, 1991)

Interaction objects are generally constructed from entities made available in interaction
toolkits. In general, interaction toolkits such as X Intrinsics [OSF 89], provide an abstraction
mechanism for defining new interaction objects. However, it is not always possible to build
new interaction objects from the predefined building blocks of the toolkit. For example, in an
earlier version of X intrinsics, widgets (i.e., interaction objects) would occupy rectangular
areas only. Under such conditions, the notion of a wall in a floor plan drawing editor could

                                      
6The term “object” should be considered here in the general sense as an entity. It does not
suppose any particular implementation technique such as a class, a function, or a shared data
structure but covers all of them.
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not be implemented as a diagonal line widget. Instead, a presentation object "wall" would
have to be defined as a new presentation object outside the toolkit.

The wall example shows that the Presentation Component should, conceptually, be structured
into two layers. Specific-interaction objects, which can be built from the building blocks of
the toolkit, should belong to the toolkit. Those which cannot be built with the toolkit should
be part of the Extension Layer. The Interaction Toolkit Adaptor, such as XVT [Valdez 89],
defines the boundary between these two layers.

Sometimes, the location for implementing a presentation object is not straighforward. For
example, the thermometer used to present the notion of temperature could be implemented
either at the toolkit layer or as part of the extension layer. If located in the toolkit, then the
thermometer becomes a general purpose interaction object and thus, should be implemented
according to the programming rules imposed by the toolkit to guarantee reusibility. If located
in the extension layer, the private status of the presentation object relaxes the reusibility
constraints of the underlying platform.

The thermometer example is merely a simple illustration of a more general problem: that of
identifying the appropriate location for software functionalities. The Slinky metamodel is an
attempt to provide an answer to this difficulty.

5.3. The slinky metamodel
Experience shows that no single architectural model can satisfy all of the software design
factors and criteria such as those reported by McCall [McCall 77]. Factors and criteria may
be conflicting. For example, portability and modifiability may impede efficiency. In the case
of the Arch model, two adaptor components have been introduced to minimize dependence
on Functional Core modifications as well as on the effective user interface toolkit.
Conversely, these abstract machines may have an adverse effect on the speed of the run-time
end product.

Another example of conflict occurs between the modular distribution of functionalities and
response time. The software foundations illustrated in Figure 3 stress that domain-specific
objects should be confined in the Functional Core and the Functional Core Adaptor. It results
from this principle that the semantic quality of feedback for a single user-system transaction
may require many round trips between the user interface portion of the system and the
Functional Core. This long chain of data transfer between the components of the user
interface to reach the Functional Core and vice versa may be costly with respect to the
system response time. Therefore, it may be inconsistent with the expectation of the user.

Domain-knowledge delegation7, which consists of down-loading functional core knowledge
into the user interface is a way to reduce transmission load at critical points [Coutaz 91] and
thus to improve response time when this criteria has been identified as an important
requirement. For example, rubber-banding in direct manipulation interfaces, requires high
performance at the user interface. In particular, if the Functional Core is implemented as a
distinct process running on a distinct processor, it may be judicious to delegate domain

                                      
7The term “semantic delegation” was previously used by Coutaz to denote “domain-specific
delegation”.
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knowledge into the user interface portion of the interactive system. By doing so, semantic
knowledge is readily available in the user interface and can be rendered to the user within the
response time constraint. Communication with the Functional Core can be postponed when
response time is not critical.

The Slinky metamodel acknowledges the fact that software architectures for interactive
systems must be tailored to the requirements and criteria selected for the particular case at
hand. “The term “Slinky” was selected to emphasize that functionalities can shift from
component to component in an architecture depending on: - the goals of the developers, - the
weighting of development criteria, -the type of system to be implemented. This concept is
loosely represented by the flexible Slinky™ toy.” [Arch 92, pp. 35].

Thus, the Slinky metamodel is a generic framework from which particular instances of Arch
models can be derived. For example, if efficiency prevails against toolkit portability, then the
Interaction Toolkit Adaptor may not be needed. If high quality semantic feedback and
efficiency are important requirements as in semantically rich rubber-banding tasks, then
domain-knowlege delegation may be performed. Such decision may result in reducing the
relative importance, thus the code size, of the Functional Core. The PAC-Amodeus model
presented in next Section provide a way to perform domain-knowledge delegation without
jeopardizing the basic “separation of concerns” principle illustrated in Figure 3.

5.4. PAC-Amodeus
PAC-Amodeus [Nigay 91b], based on early experience with PAC, is a blend of the
components advocated by Arch and the refining process in terms of agents advocated by
PAC.

PAC-Amodeus adopts the same components as Arch and assigns the same roles as Arch to
these components:  the Functional Core corresponds to the Domain-Specific Component, the
Functional Core Adaptor is the Arch Domain Adaptor Component, the Dialogue Controller
denotes the Dialogue Component, and the Presentation Component embeds the two levels of
abstraction shown in Figure 7. PAC-Amodeus goes one step further than Arch by
decomposing the Dialogue Component into a set of cooperative PAC agents.
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Figure 8: The PAC-Amodeus model. [Nigay 91b]

As presented above, the Dialogue Controller has the responsibility for task-level sequencing.
Each task or goal of the user corresponds to a thread of dialogue. This observation suggests
the choice of a multi-agent model. Indeed, a multi-agent model distributes the state of the
interaction among a collection of cooperating units. Modularity, parallelism, and distribution
are convenient mechanisms for supporting multi-thread dialogues. One agent or a collection
of cooperating agents can be associated to each thread of the user's activity. Since each agent
is able to maintain its own state, it is possible for the user (or the functional core) to suspend
and resume any thread at will.

The Dialogue Controller receives events both from the Functional Core, via the Functional
Core Adaptor, and from the user via the Presentation Component. Bridging the gap between
a Functional Core Adaptor and Presentation Component has some consequences: In addition
to task sequencing, the Dialogue Controller must perform data transformation and data
mapping:

1) A Functional Core Adaptor and a Presentation Component use different formalims. One is
driven by the computational considerations of the Functional Core, the other is toolkit
dependent. In order to match the two formalisms, data must be transformed inside the
Dialogue Controller.

2) State changes in the Functional Core Adaptor must be reflected in the Presentation
Component (and vice versa). Therefore, links must be maintained between domain objects of
the Functional Core Adaptor and presentation objects in the Presentation Component. As
discussed in [Coutaz 91], a domain object may be rendered with multiple presentation
techniques. Therefore, consistency must be maintained between the multiple views of the
conceptual object. Such mapping is yet another task of the Dialogue Controller.
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Thus, bridging the gap between the Functional Core Adaptor and the Presentation
Component covers task sequencing, formalism translation, and data mapping. Experience
shows that these operations must be performed at multiple levels of abstraction and
distributed among multiple agents. Levels of abstraction reflect the successive operations of
abstracting and concretizing. Abstracting combines and transforms events coming from the
presentation techniques into higher level events for higher abstractions. Conversely,
concretizing decomposes and transforms high level information into low level information.
The lowest level of the Dialogue Controller is in contact with the presentation objects.

As discussed above, the multi-agent approach is a promising way to support parallelism,
distribution, multithread dialogues, and iterative design. Since agents should carry task
sequencing, formalism transformation, and data mapping at multiple levels of abstraction, it
is tempting to describe the Dialogue Controller at multiple grains of resolution combined
with multiple facets. At one level of resolution, the Dialogue Controller appears as a "fuzzy
potato". At the next level of description, the main agents of the interaction can be identified.
In turn, these agents are recursively refined into simpler agents. This description is nothing
more that the usual abstraction/refinement paradigm applied in software engineering.

Orthogonal to the refinement/abstraction axis, we introduce the "facet" axis. An agent is also
described along three facets: Presentation, Abstraction, Control. These facets are used to
express different but complementary and strongly coupled computational perspectives.

• The Presentation facet of an agent implements the perceivable behavior of the agent.
As shown in Figure 9, it is related to some presentation object of the Presentation
Component.

• The Abstraction implements the competence of the agent (i.e., its expertise) in an
essentially media-independent way. It is the Functional Core of the agent. It maintains
the abstract state of the agent. It may be related to some domain object(s) of the
Functional Core Adaptor. The abstraction facet of an agent provides a good
mechanism for performing domain-knowledge delegation.

• The Control part of an agent is in charge of two functions: linkage of the Abstraction
part of the agent to its Presentation portion and maintenance of the relationships of
the agent with other agents. The linkage serves two purposes: 1) formalism
transformations between the Abstraction and the Presentation portions of the agent,
and 2) data mapping between the abstract facet and the presentation facet.
Relationships between agents may be static or dynamic. Dynamic relationships are
required when agents are dynamically created/deleted. Relationship maintenance by
the control part of an agent covers the communication and the synchronization
mechanism between this agent and its cooperating partners.

In summary, an agent could be viewed as a mini-Arch. Figure 9 shows how a PAC agent
relates to other PAC agents and to the surrounding world of the Dialogue Controller: domain
objects in the Functional Core Adaptor and presentation objects in the Presentation
Component. If we consider the Dialogue Controller as a whole:

• the set of Abstraction parts of the various agents defines the internal state of the
interaction
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• the set of Presentation parts defines the external state of the interaction

• the set of Control parts defines the mapping functions between the internal and the
external state. Some properties of these functions are defined in Harrison and
Thimbleby [Harrison et al. 90].

Abstraction
Control

Presentation

Functional 
Core

Adaptor

Domain 
Object

Presentation

Component

Presentation
Object

Figure 9: A PAC agent of the Dialogue Controller. Dashed lines represent possible relationships with other
agents. Dimmed arrows show the possible links with the surrounding components of the Dialogue Controller.
[Nigay  91b]

This general description of the Dialogue Controller does not provide enough insight about
how to define the agents for a particular interactive system. Heuristic rules have been devised
by Nigay in Project Amodeus 1 and have been implemented in the form of an expert system,
PAC-Expert [Nigay 91a]. PAC-Expert is able to automatically identify the agents as well as
their role from the description of the user interface of the system.  The rules are organized
along three criteria: window existence, window content, and links between windows.

5.5. The Implementational Models and the MSM framework
The following discussion is structured according to the dimensions of the MSM framework.

5.5.1. Communication channels
The notion of communication channels is implicitly covered by the implementational models.
In Seeheim, they are located in the Presentation component. In Arch and PAC-Amodeus,
they are part of the Interaction Component.

5.5.2. Levels of Abstraction
Within implementational models, levels of abstraction are correlated with the granularity of
their components. Figure 10 illustrates the relative ordering of Seeheim, Arch and PAC-
Amodeus according to the component granularity.
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Figure 10: Ordering of the implementational models according to the granularity of their components.

Seeheim makes explicit four components from the low level Presentation to the high level
functional core. Each component corresponds to a level of abstraction. Arch refines Seeheim
on the concretization side by decomposing the Seeheim Presentation into two levels of
abstraction: the Interaction Component and the Presentation Component. The Arch
Presentation, which models a virtual Interaction layer, is an abstraction of the Interaction
Component. Finally, PAC-Amodeus refines the Arch Dialog Component in terms of agents.
This community of agents, which performs a sequence of abstraction and concretization
operations, defines a set of levels of abstraction.

At the opposite of Seeheim, Arch and PAC-Amodeus make explicit the nature of the
information exchanged between the components. This information successively takes the
form of Interaction objects, Presentation objects, Conceptual objects, and Domain objects.
Each one determines the interface between two consecutive levels of abstraction.

5.5.3. Context
Context is supported implicitly by the implementational models. One can view each level of
abstraction as a context-based processing unit. Again, we have the intuition that this notion is
important but we lack a clear definition to produce a sound discussion about this issue.

5.5.4. Fusion and Fission
Fusion and fission are not the main motivations of Seeheim and Arch. The Seeheim
description however presents the Dialogue Control as the location for syntax analysis. By
definition, a syntax analyser combines lexical items into syntactic units.  Although not
explicitly stated in the description of the Arch model, one can easily infer fusion and fission
phenomena to transform Interaction objects into Presentation objects,  then Presentation
objects into Conceptual objects, up to Domain objects and vice versa.

Using PAC-Amodeus to develop Matis [Nigay et al. 93], we have identified three levels of
fusion: lexical, syntactic and semantic that can be mapped to the three conceptual levels
defined by Foley et al. [Foley et al. 84]. Lexical fusion corresponds to the Binding level
which establishes the interface with the hardware primitives. Therefore lexical fusion is
performed in the Interaction component. The syntactic and semantic fusions correspond
respectively to the Sequencing and Functional levels. These fusions are thus handled by the
component responsible for task-level sequencing: the dialogue controller.

Lexical fusion. Lexical fusion is performed in the Interaction Component. A typical example
of lexical fusion may be found in the Macintosh where the shift key combined with a mouse
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click allows multiple selections. Lexical fusion involves only temporal issues such as data
synchronization.

Syntactic and semantic fusion. The Dialogue Controller is responsible for syntactic and
semantic fusions. Syntactic fusion involves the combination of data to obtain a complete
command. Semantic fusion combines results of commands to derive new results. For
instance, in VoicePaint, the combination of the command “Draw line” with the command
“Modify color” results in a two color line. (These two commands can be specified
simultaneously.)

Syntactic and semantic fusion requires a uniform representation: the melting pot object. As
shown in Figure 11, a melting pot object is a 2-D structure. The structural parts correspond to
the structure of the commands that the Dialogue Controller is able to interpret. Events
generated by user's actions are abstracted within the Presentation Component and mapped
onto the structural parts inside the Dialogue Controller. These events may have different
time-stamps. A command is complete when all of its structural parts are filled up by at least
one piece of data. Multiple data for the same structural part may denote redundancy or reveal
inconsistencies.
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Figure 11: The melting pot object as a common representation for data fusion within the Dialogue Controller.

The non-sequential, hierarchical and distributed features of the multi-agent architecture
adopted for the Dialogue Controller make it particularly well suited to perform fusion. Data
is combined in parallel and incrementally along the levels of the hierarchy. The fusion
mechanism is composed of a set of micro-fusions performed within each agent. The fusion
process is based on two criteria: time (e.g., data belonging to the same temporal window) and
the structure of the objects to be combined. Furthermore, an agent may add new data from its
own state, to the fusion process.



25

ti

Select

Workspace 1

Editor 1

Root

that
there

tj

put

tk
Select

tktjti

that
there

put
Obj

Pos

Tools 
Palette

Workspace 2

Editor 2

tjti

that
put

Obj

tk
Posthere

Figure 12: An example of different levels of fusion inside the hierarchy of PAC agents.

An example of fusion. Figure 12 illustrates a two-level fusion process for a graphics editor
that supports speech and mouse gesture. In this example, the user says "put that there" and at
the same time, uses the mouse to select the object to be moved and to indicate the destination
in a distinct workspace. A workspace is a drawing area. As in most graphics editors, each
workspace has a companion window, a palette that displays the graphics tools. By applying
the heuristics rules described in [Niagy et al. 91a], one obtains the architecture shown in
Figure 12.

At the bottom of the hierarchy, agents Workspace1 and Workspace2 interpret the events that
occurred in the drawing areas. Similarly, ToolPalette agent is in charge of the events issued
in the palette. Editor agents, such as Editor1 and Editor2, combine information from lower
levels into higher abstractions. For the particular example, the three agents Workspace1,
ToolPalette, and Workspace2 each receive a melting pot object from the Presentation
Component. Each melting pot object corresponds to a user's actions. The agent Workspace1
translates the Select action into the selected graphical object Obj while in parallel, the agent
Workspace2 translates the Select action into a position Pos. The cement agent, Editor1, then
performs a first level of fusion by combining the "put that there" with the selected object. A
second level of fusion is then performed by the Root agent to obtain the complete command
to be sent to the functional core.

5.5.4. Parallelism
Seeheim and Arch do not support parallelism explicitly whereas PAC-Amodeus refines the
Dialogue Component in terms of agents. However, one can inject parallelism at different
levels of abstraction. Raw data is captured in the Interaction component by event handlers.
There is one event handler per input device and the combination of multile event handlers
under the control of a system process form a communication channel.
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Concurrency is also supported in the Presentation Component which receives low level
events (Interaction objects) from the Interaction Component and transforms them into more
abstract interaction techniques. For example, a mouse click is transformed into the Select
interaction technique. Finally, the multi-agent architecture of the PAC-Amodeus Dialogue
Controller offers an interesting conceptual framework to support concurrency. Agents can
process data (i.e., Presentation objects and Conceptual objects) in parallel.

5.6. Summary
In summary, if we refer to our simple classification scheme described in Section 2, Seeheim,
Arch, Slinky and PAC-Amodeus are all driven by implementation issues: all of them
introduce programming interfaces explicitly to augment portability and reusability. With
regard to granularity, Figure 10 shows their relative ordering from the less refined, Seeheim,
to the most refined, PAC-Amodeus. As far as the MSM criteria are concerned, PAC-
Amodeus, which explicitly captures the notion of agent, inherits all of the advantages of
agent-based approaches.

6. Conclusion
This document is a reflexion about current practices in architecture modelling for interactive
systems. We have organized the presentation of architecture models along the “nature”
dimension of our simple classification scheme of architecture models: conceptual versus
implementational. We have also checked how these models are able to satisfy the MSM
framework.

From there, we need to study how conceptual and implementational models can be used to
model and implement multimodal user interfaces. On the conceptual side, GIO and PAC are
good candidates. On the implementation side, PAC-Amodeus has already been validated
with practical experiences. However, fission and interleaving between input and output are
not clearly mastered yet.
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