
The AMODEUS Project
ESPRIT Basic ResearchAction 7040

AMODEUS Partners:
MRC Applied Psychology Unit, Cambridge, UK (APU)

Depts of Computer Science & Psychology, University of York, UK. (YORK)
Laboratoire de Genie Informatique, University of Grenoble, France.(LGI)
Department of Psychology, University of Copenhagen, Denmark. (CUP)
Dept. of Computer & Information ScienceLinköping University, S. (IDA)

Dept. of Mathematics, University of the Aegean Greece (UoA)
Centre for Cognitive Informatics, Roskilde, Denmark(CCI)

Rank Xerox EuroPARC, Cambridge, UK.(RXEP)
CNR CNUCE, Pisa Italy (CNR,CNUCE)

MATIS: a UAN Description and Lesson Learned

 Coutaz J., Faconti G., Paterno F., Nigay L. & Salber D.

28th June 1993 (draft)

Amodeus Project Document: System Modelling/WP14

Abstract
This working paper is concerned with the thourough description of MATIS (Multimodal Airline
Travel Information System) using the User Action Notation (UAN) [HG92] description
language. The purpose of this exercise is three fold:

1. to provide the AMODEUS consortium with a precise description of the behaviour of
MATIS as perceived by the user,

2. to evaluate UAN for the specification of multimodal user interfaces,

3. to investigate the automatic identification of an agent architecture from a UAN
specification.

An informal description of MATIS, a multimodal interactive system for input, is available in
[CNS93] as well as in the form of a PAL video. To summarize, MATIS allows an end-user to
obtain information about flight schedules using speech, mouse, keyboard, or a combination of
these techniques. User’s requests are translated into the SQL formalism to access information
stored in a data base. Speech input is processed by Sphinx, a continuous, speaker independent
recognition engine developed at Carnegie Mellon University.

Section 2 provides a detailed UAN description of MATIS. Section 3 will be concerned with an
evaluation of UAN as a specification language. Then LOTOS and UAN will be compared. The
working paper closes with a discussion about how to go from a UAN description to an agent
architecture.

1. Introduction

This working paper is concerned with the thourough description of MATIS (Multimodal Airline
Travel Information System) using the User Action Notation (UAN) [HG92] description
language. The purpose of this exercise is three fold:

1. to provide the AMODEUS consortium with a precise description of the behaviour of
MATIS as perceived by the user,

2. to evaluate UAN for the specification of multimodal user interfaces,

3. to investigate the automatic identification of an agent architecture from a UAN
specification.

An informal description of MATIS is available in [CNS93] as well as in the form of a PAL
video. To summarize, MATIS allows an end-user to obtain information about flight schedules
using speech, mouse, keyboard, or a combination of these techniques. User’s requests are
translated into the SQL formalism to access information stored in a data base. Speech input is
processed by Sphinx, a continuous, speaker independent recognition engine developed at
Carnegie Mellon University.

According to the MSM framework, MATIS is a multimodal interactive system for input only.
At the command level, MATIS supports the synergistic use of two input modalities (mixing
speech and mouse as in “show me USair flights from Pittsburgh to this city”) as well as the
exclusive use of these modalities using speech only (as in “show me USair flights from
Pittsburgh to Boston”) or filling a form using mouse and keyboard only. At any time, the user
can switch freely between these techniques: there is no prevailing modality. Each modality
offers the same power of expressiveness. In addition, MATIS supports multithreading. It allows
the user to work on multiple requests in an interleaved way: although a request may be partially
formulated, the user may start a new one then come back to the previous one.

Next section provides a detailed UAN description of MATIS. Section 3 will be concerned with
an evaluation of UAN as a specification language. Then LOTOS and UAN will be compared.
The working paper closes with a discussion about how to go from a UAN description to an
agent architecture.

2. MATIS UAN specification

One will find the UAN notation in Annexe1. Annexe 2 contains the variables and functions we
have introduced for the description of MATIS.

Task: TopLevel
User Action Interface Feedback Interface State

StartOM
StartMatis
(
 SelMatis HideMatis
 GetInfoMatisShowToolsMatis
 SelOMAppli (anOMAppli)
) *
∅

(GCF SetOMPref) * × PlanTrip)
♠

QuitMatis

TopLevel is the task that the user needs to accomplish to use Matis. First, the Office Manager
(OM) must be started. OM controls the allocation of the Sphinx speech recognition system
between the applications it manages. It does so for the microphone in a way similar to the
window manager for mouse and keyboard allocation. Thus, at a given time, only one
application can use Sphinx but the user can switch freely between these applications (task
SelOMAppli (anOMAppli)). (“anOMAppli” denotes one of the applications supported by OM
and “OMApplis” denotes the set of applications that OM supports.)

Once OM is launched, the Matis application can be started. From now on, the user can use any
number (or none) of the general convenience functions (GCF) or any one of the OM
interruptible tasks . In our specification shown above, only one of these OM tasks is modelled:
SetOMPref to set up preferences for the OM environment. GCF’s and SetOMPref can interrupt
PlanTrip, and converseley (×). PlanTrip is the main task to be performed with Matis. Matis does
not support the concept of trip explicitly. If the user needs to plan multiple trips within one
session, he will have to mentally model the distinction between these trips. Thus from the
system’s perspective, we describe the task as “PlanTrip” although in the user’s mind, it may be
“Plantrip*”.

While planning a trip or using a GCF or an interruptible OM function, the user may perform
non interruptible Matis tasks or non interruptible OM tasks (∅): SelMatis (to make Matis the
current active application in the NeXT environment), HideMatis (to unmap all of the Matis
windows), GetInfoMatis (to get general information about the functionalities of Matis),

ShowToolsMatis (to map the tool windows of Matis, see SM/WP10), SelOMAppli (to ask OM
to allocate the speech recognizer to another OM application). The user may decide to do so zero
or multiple times (*).

QuitMatis is the last possible Matis task. QuitMatis can be invoked at any time during
interruptible tasks. Once QuitMatis is invoked, there is no way for the user to resume the
execution of the interrupted task. This situation cannot be expressed with UAN. As a result, we
have introduced the symbol ♠ to denote the break operator.

Task: StartOM (is atomic)

User Action Interface Feedback Interface State

~[x,y in OMICON] ∨∧
(t<tdoubleClick)∨∧ OMICON! SelAppli = OMAppli

(t>tready) OMICON-! OMApplis =
 MatisAppli ≈
 o the r OM

applications
Display (OMW) at topright

in Desktop
Display (RecognitionW)

at bottom in OMW
Display (OMMenu) at topleft

in Desktop
Display (OMAlertW) with text
"launching manager, please wait"

at center in Desktop
(t>tload) Erase (OMAlertW)
Display (OMIcon) at topleft

in OMW
OMIcon!
∀Appli ∈ OMApplis :

Display (AppliIcon) in OMW
Display (OMEarW) (ready)

at topleft in Desktop

The Office Manager is started by double-clicking the OM icon on the desktop. This icon is
highlighted (OMICON!) until the system is ready ((t>tready) OMICON-!). The OM main
window, OMW, is mapped on the desktop. The recognition window (see SM/WP10) appears
within the OMW. The OM main menu is displayed on the desktop. (In the NeXt environment,
the main menu of an application is equivalent to the menu bar of the Macintosh.) An alert
window notifies the user that office manager is being loaded. Then it disappears. The OMIcon
is displayed highligted in the OMW as well as all of icons of the applications that OM manages.
Finally, OMEarW is mapped. This window contains an icon which expresses the state of the
speech recognition system : ready, listening, busy, sleeping. By convention, we will say that:
- OMEarW denotes the ready state,
- OMEarW! corresponds to the listening state,
- OMEarW !! expresses the busy state
- OMEarW !!! means sleeping.

We observe that an application is denoted by two icons. One belongs to the desktop, the second
one is displayed within OMW. For example, OMICON (ICON, upper case) denotes the desktop
icon for OM while OMIcon (Icon, mixed case) denotes the OMW icon of OM. We will adopt
this convention all through the description. In particuler, MatisICON and MatisIcon
respectively denote the desktop icon and the OM icon for Matis.

From the system internal state, the current active application is OM (SelAppli=OMAppli) and
the set of applications that OM supports includes Matis (OMApplis = MatisAppli ≈ other OM
applications).

Task: StartMatis (is atomic)

User Action Interface Feedback Interface State

~[x,y in MatisIcon] ∨
∧ AppliIcon! : AppliIcon-!

MatisIcon!
Display (MatisICON)
at bottom in Desktop
Display (RequestToolsW)
at top center in Desktop
RequestToolsW! SelW = RequestToolsW
Erase (OMMenu) SelAppli = MatisAppli
Display (MatisMenu)
at topleft in Desktop SelDictionary =

MatisDictionary
SpeechMode =

DefSpeechMode
SelR = ∅
NbR = 1
NextIdR = 2
R1 = NewR(NbR)
SelSlot (R1) = ∅
∀s ∈ R1 :

IsSpecSlot (R1, s) =
F

Display (Form (R1))
with title “Request” • NbR
at center left in Desktop

To start Matis, one needs to click the Matis Icon (MatisIcon) in the OM window (OMW). When
releasing the mouse button, the previous selected icon in OMW is unlighted and the Matis icon
is highlighted. A new Matis Icon is displayed on the desktop (MatisICON). The Request Tools
window (RequestToolsW) is mapped and highlighted. OMMenu is replaced by the Matis main
menu. A request R1 is created with an identification number equal to 1 (NewR(NbR)). The
request is materialized on the screen as a form (i.e., a set of slots) whose title includes the id
number of the request (Map (Form (R1))). The total number of requests is 1 (NbR=1) and the
next available Id number is 2 (NextIdR=2).

From the system state perspective, the current selected window is RequestToolsW
(SelW=RequestToolsW), the current active application is MatisAppli (SelAppli=MatisAppli),
and the current dictionary and grammar used by Sphinx to interpret speech input are those
defined for Matis (SelDictionary=MatisDictionary). At launch time, the speech mode is set to

the user’s preferences specified during the last session (preferences are permanent objects)
(SpeechMode=DefSpeechMode). Sphinx supports four speech modes: In “Press&Hold” mode,
Sphinx listens as long as the user maintains the mouse button down in the EarIcon. In
“PressToStart” mode, Sphinx listens as soon as the user clicks the EarIcon. It stops listening
when the users clicks again. In the “continuous mode”, Sphinx listens to the user all the time.
Except for the ‘Press&Hold” mode which preempts the mouse (as well as the keyboard which is
managed by the same process as the mouse), all of the modes allow the user to use multiple
input devices simultaneously.

There is no current selected request (SelR= ∅). In the newly created request, there is no selected
slot (SelSlot= ∅) and all of the slots s of the request are empty (i.e., there is no default values or
the slots have not been specified yet, i.e., IsSpecSlot (R1, s) = F).

Since all of the applications supported by OM are started in the same way, it would have been
more appropriate to define a parameterized task as shown below. If this formalization is
adopted, then task StartMatis in the TopLevel task should be specified as StartOMAppli(Matis).
Similar remarks hold for SelMatis, HideMatis and GetInfoMatis which adhere to the
conventions of the NeXT environment.

Task: StartOMAppli (Appli) (is atomic)

User Action Interface Feedback Interface State

~[x,y in AppliIcon] ∨
∧ AppliIcon’! : AppliIcon’-!

AppliIcon!
Display (AppliICON) ...
case
Appli = matis :

Display (RequestToolsW) ...
RequestToolsW! SelW = RequestToolsW

SelR = ∅
NbR = 1
NextIdR = 2
R1 = NewR(NbR)

Display (Form (R1)) ... SelSlot (R1) = ∅
∀s ∈ R1 :

IsSpecSlot (R1, s) =
F

Appli = others :
....

endcase
Erase (OMMenu) SelAppli = Appli
Display (AppliMenu) ... SelDictionary =

AppliDictionary

Task: SelMatis (is atomic)

User Action Interface Feedback Interface State
∃ w ∈ MatisAppli
 ∧ IsWindow (w) ∧ IsVisible(w):
SelMatisM1(w)

IsVisible(MatisICON):
SelMatisM2

Task: SelMatisM1(w)(is atomic)

User Action Interface Feedback Interface State
~[x,y in w] ∨∧ w’! : w’-! SelW = w

w!
¬ IsMainMenu (MatisMenu):

UnMap(SelAppliMenu)
Map (MatisMenu) SelAppli = MatisAppli

S e l A p p l i M e n u =
MatisMenu

Task: SelMatisM2 (is atomic)

User Action Interface Feedback Interface State
~[x,y in MatisICON]

∨∧ (t<tdoubleClick)∨∧) w’! : w’-!
selW!
UnMap(SelAppliMenu)
Map (MatisMenu) SelAppli = MatisAppli
U n M a p (M a t i s I C O N) S e l A p p l i M e n u =

MatisMenu

There are two methods for making the Matis application the current focus. If there exists a
visible window w that belongs to the Matis application, then the user can click within that
window. The current window in the desktop is unlighted, w is highlighted and becomes the
current selected window for Matis (SelW =w). If the current main menu is not that of Matis,
then it is replaced by the Matis main menu.

The second method consists in double-clicking the Matis icon displayed on the desktop. The
Matis window which was last selected is highlighted (selW!), the Matis main menu replaces the
previous main menu, and the Matis icon on the desktop disappears.

In both cases, the current selected application is Matis. SelMatisM1 allows the user to both
make Matis current and change the current active window within Matis.

Task: SelOMAppli (Appli) (is atomic)

User Action Interface Feedback Interface State

IsVisible (AppliIcon):
~[x,y in AppliIcon] ∨
∧ AppliIcon’! : AppliIcon’-!

AppliIcon!
SelDictionary =

AppliDictionary

SelOMAppli allows the user to switch to another OM application. More precisely, only the
dictionary and grammar used by Sphinx is updated. At the workstation level, the current active
application has not changed. As a result, if Matis is the current active application (i.e.,
SelAppli=MatisAppli) and the user clicks the icon of another application supported by OM,
then the user may end up talking to Matis while Sphinx does not use the Matis vocabulary and
grammar.

Task: SetOMPref

User Action Interface Feedback Interface State

SelAppli = OMAppli :
~[PrefItem in OMMenu] ∨ (PrefItem in MatisMenu)!
∧ (PrefItem in MatisMenu)- !

Display (OMPrefW)
 in Desktop

IsVisible(OMPrefW):
(~[PrefItem in OMPrefW] ∨∧)∗ (PrefItem' in OMPrefW)-!

(PrefItem in OMPrefW)!
ExitForm (OMPrefW) IsExit (OMPrefW, OK):

SpeechMode =
Value(PrefItem)

SetOMPref allows the user to set up preferences for the OM environment. In particular, speech
recognition mode may be specified. To do so, the OM application must be currently active.
Then one needs to select the Preference item in the OM main menu. When releasing the mouse,
a preference window pops up. From now on, preferences items may be selected any number of
times followed by the exit form task. If the user exits from OMPrefW by clicking the OK
button, then the speech mode has been changed and must be set to the value that corresponds to
the last selected item in OMPrefW (SpeechMode = Value(PrefItem)).

Task: ExitForm (w) (is atomic)

User Action Interface Feedback Interface State

SelW = w :
~[CancelButton in w] ∨∧ (IsExit (w,OK) = F

IsExit (w,Cancel) =
T)

~[OKButton in w] ∨∧ (IsExit (w,OK) = T

IsExit (w,Cancel) = F)

Erase (w)

ExitForm task corresponds to closing a window that contains a Cancel and an OK button.
Internal state is updated according to the button selected. In any case, w, the window that
supports the form in unmapped.

Task: HideMatis (is atomic)
User Action Interface Feedback Interface State

SelAppli = MatisAppli :
~[x,y in HideItem in MatisMenu] ∨ (HideItem in MatisMenu)!
∧ (HideItem in MatisMenu) - !

∀ w ∈ MatisAppli ∧
IsWindow(w) : Erase(w) SelAppli =
Erase(MatisICON) Prev (SelAppli)

The result of Hiding Matis is to unmap all of the windows that belong to Matis (∀ w
∈ MatisAppli: UnMap(w)) and represent Matis as an icon at the bottom of the desktop
(Map(MatisICON)).

Task: GetInfoMatis (is atomic)

User Action Interface Feedback Interface State

SelAppli = MatisAppli :
~[InfoItem in MatisMenu] ∨ (InfoItem in MatisMenu)!
∧ (InfoItem in MatisMenu) - !

Display (InfoW) in Desktop SelW = InfoW
infoW!

The user can obtain general information about MATIS by performing the GetInfoMatis task. To
do so, the information item of Matis main menu must be selected. The information window
InfoW is mapped until the user closes it using the close box provided by the window manager.

Task: ShowToolsMatis (is atomic)

User Action Interface Feedback Interface State

SelAppli = MatisAppli :
~[ToolsItem in MatisMenu] ∨ (ToolsItem in MatisMenu)!
∧ (ToolsItem in MatisMenu)- !

Display (RequestToolsW) SelW = RequestToolsW
 at top center in

Desktop
RequestToolsW !

The result of the ShowToolsMatis task is the display of the Request Tools window that shows
all of the tools that can be used with the mouse to fill in request forms.

Task: QuitMatis (is atomic)

User Action Interface Feedback Interface State

SelAppli = MatisAppli :
~[QuitItem in MatisMenu] ∨ (QuitItem in MatisMenu) !
∧ (QuitItem in MatisMenu) - !

∀ w ∈ MatisAppli
∧ IsWindow(w) : Erase (w)
Erase(MatisMenu)
MatisIcon -!
OMIcon ! DefSpeechMode=

SpeechMode
Display (OMMenu) SelAppli = OMAppli
 at top left in Desktop

To quit Matis, the user needs to select the Quit item in the Matis main menu. All of the
windows that belong to Matis are unmapped, the Matis Icon in the OM window is
unhighlighted and OM becomes the current active application. The default speech mode for
Matis is set up to the current speech mode.

Task: PlanTrip

User Action Interface Feedback Interface State

SelAppli = MatisAppli :
(SpecRNL (R, FULL)
SpecRNL&Mouse (R, FULL)) *
∅
(
PlanTripCT * ×
(BuildR (R’) 0-1 × BuildR (R”) 0-1)*
)

To plan a trip, Matis must be the current active application (selAppli=MatisAppli). When this
condition is satisfied, the user can build a request. While building a request, any one of the
convenience tasks (PlanTripCT) available within the plan trip task (e.g., cut and paste facilities)
may be performed. These tasks can be executed 0 or multiple times in an interleaved way with
the construction of information requests (thus, PlanTripCT * ×). An information request may
not be built at all or if built, is built at most once (thus, BuildR(R’)0-1). It is possible to build
multiple requests in an interleaved way (thus, BuildR(R’)0-1 × BuildR(R”)0-1). Finally, it is
possible to repeat this pattern 0 or more times (thus, (BuildR(R)0-1 × BuildR(R’)0-1)*). All of
these tasks can be interrupted by any number of the non interruptible tasks SpecRNL(R, FULL)
or SpecRNL&Mouse(R, FULL). SpecRNL(R”, FULL) denotes the specification of a full
request in natural language using either speech or the keyboard but no deictic expression.
SpecRNL&Mouse corresponds to the specification of a full request using natural language
(speech or keyboard) and mouse for solving deictics.

Task: BuildR (R)

User Action Interface Feedback Interface State
(
(SelR (R) ClrR (R) HideR(R))*
∅ SpecR (R)+
)
SubmitR(R)

Building a request R consists of specifying the request at least once (thus, SpecR (R)+). This
task can be interrupted 0 or more times by either one of the following atomic tasks: select a
request, clear the request, or hide (iconify) the window request ((SelR (R) ClrR (R)
 HideR(R))* ∅). Once the request has been specified, it must be submitted (Submit(R)).

Task: SpecR (R)
User Action Interface Feedback Interface State

(
SpecRFormFilling (R, s)

SpecRNL (R, PARTIAL)

SpecRNL&Mouse (R, PARTIAL)
)*

Task SpecR (R) consists of the specification of one or several slots in request R. To do so, it is
possible to fill the request form (SpecRFormFilling), use natural language with no deictic
expressions (SpecRNL), or use natural language and solve deictic expressions with mouse
pointing (e.g., “flights from this city” + a mouse click on a city name displayed on the screen).
PARTIAL denotes a partial (as opposed to FULL) specification of the request when using
natural language.

Task: SpecRNL (R, fps)

User Action Interface Feedback Interface State

SpecRSpeech (R, fps) SpecRKeyNL (R, fps)

Natural language specification can be done using speech (SpecRSpeech) or typing a sentence
with the keyboard (SpecRKeyNL).(Parameter fps stands for “full or partial or show”.)
Sentences produced by task SpecRNL are self contained : they do not include any deictic
expression.

Task: SpecRNL&Mouse (R, fps)

User Action Interface Feedback Interface State

SpecRSpeech&Mouse (R, fps)

SpecRKeyNL&Mouse (R, fps)

Task SpecRNL&Mouse supports the specification of a request using natural sentences that
include deictic expressions. Sentences in natural language may be uttered or typed in. In both
cases, deictics are solved with the mouse used as a pointing device.

Task: SpecRFormFilling(R)
User Action Interface Feedback Interface State

SpecRKeySlot (R) SpecRMouseSlot (R)

SpecRFormFilling(R) denotes the task of filling a form according to the usual graphics
paradigm. Slot values of a request R can be entered by simply typing values in the current
selected slot of the form of R (SpecRKeySlot (R)).They can also be entered using the mouse by
selecting the appropriate values through the RequestTools window (SpecRMouseSlot (R)).
Tasks SpecRMouseSlot (R) and SpecRKeySlot (R) will not be developed further.

Task: SpecRSpeech (R, fps) is atomic

User Action Interface Feedback Interface
State
SelDictionary = MatisDictionary:
SelAppli = MatisAppli ∧ SelR = R:
case
SpeechMode = Push&Hold

~[x,y in OMEarW]∨ OMEarW! (Listening)
ProduceNonDeicticSentence

(sentence, fps,)
∧ NLFeedback&State(sentence,)

SpeechMode = Continuous
ProduceNonDeicticSentence

(sentence, fps,) (t > tsilence)

NLFeedback&State(sentence,)
 ||
TaskT*: TaskT ∈ Tasks ∧ ¬

SpeechMode = PushToStart
~[x,y in OMEarW]∨∧
ProduceNonDeicticSentence

(sentence, fps,)
 ||
TaskT*: TaskT ∈ Tasks ∧ ¬
~[x,y in OMEarW]∨∧ NLFeedback&State(sentence,)

endcase

SpecRSpeech describes how to specify a request R using speech only but without deictic
expressions. “fps” denotes the coverage of the meaning of the sentence (f stands for full request
specification, p for partial specification, and s denotes the “show me” sentence). Sentences are
not supposed to contain deictic expressions (ProduceNonDeicticSentence). Mousing may be
involved depending on the current speech mode.

When speech mode is set to Push&Hold, one can talk while mouse button is down within the
OM ear window. When in continuous mode as well as in PushToStart mode, another task may
be performed in true parallelism while uttering a sentence provided that this task can be
accomplished without the microphone (TaskT*: TaskT ∈ Tasks ∧ ¬) . In the case of
continuous mode, speech recognition is launched when detecting a silence (t > tsilence). For the
two other cases, end of speech input is signaled by a mouse up event.

Task: SpecRKeyNL (R, fps) is atomic

User Action Interface Feedback Interface
State
SelW = RecognitionW ∧
SelDictionary = MatisDictionary:

ProduceNonDeicticSentence
(sentence, fps, K) NLFeedback&State(sentence,)

Typed natural language expressions must be entered in the recognition window (SelW =
RecognitionW). Sentences typed in with SpecRKeyNL do not contain any deictic expression.

Task: SpecRKeyNL&Mouse (R, fps) is atomic

User Action Interface Feedback Interface
State
SelW = RecognitionW∧
SelDictionary = MatisDictionary:

ProduceDeicticSentence
(sentence, fps, K) NLFeedback&State(sentence, K)

SelectValues

Task SpecRKeyNL&Mouse corresponds to the specifcation of one, multiple or all (fps) of the
slots of the current request R using a typed in natural language sentence that includes at least
one deictic expression. Once the sentence has been typed in the Recognition window, the user
must select values with the mouse to solve deictic expressions.

Task: SelectValues User Action Interface Feedback Interface
State
IsVisible (s):
(
~[x,y in s] ∨∧ IsSlot(s) :

SelectedSlots =
 SelectedSlots ≈ s
)+ s ∈ SelectedSlots ∧

s ∈ deictic in sentence:
Display (Value(s)) in s in Form(SelR) SelectedSlots =

∅

Task SelectValues consists of moving the mouse to a visible item s on the screen (IsVisible (s))
then to press and release the mouse button (~[x,y in s] ∨∧). This sequence of actions can be

performed multiple times in a row (+). On the system state side, if item s denotes the value of a
request slot (IsSlot(s)), this item is added to a list of selected item (SelectedSlots =
SelectedSlots ≈ s). On the interface side, for every selected slot item that has been referenced by
a deictic expression in the sentence (s ∈ SelectedSlots ∧ s ∈ deictic in sentence) is displayed in
its corresponding slot in the request form.

Task: SpecRSpeech&Mouse (R, fps) is atomic

User Action Interface Feedback Interface
State

SelAppli = MatisAppli ∧ SelR = R:
case
SpeechMode = Push&Hold

~[x,y in OMEarW]∨ OMEarW! (Listening)
ProduceDeicticSentence

(sentence, fps,)
∧ NLFeedback&State(sentence,)
SelectValues

SpeechMode = Continuous
ProduceDeicticSentence

(sentence, fps,) (t > tsilence)

NLFeedback&State(sentence,)
 ||
SelectValues

SpeechMode = PushToStart
~[x,y in OMEarW]∨∧
ProduceDeicticSentence

(sentence, fps,)
 ||
SelectValues
~[x,y in OMEarW]∨∧ NLFeedback&State(sentence,)

endcase

Task SpecRSpeech&Mouse is similar to SpecRSpeech but sentences contain at least one deictic
expression and deictic expressions must be solved with the mouse. When SpeechMode is
Push&Hold, the mouse is used to inform the speech system that the user is currently speaking.
As a result, the selection of slot values on the screen must be performed in sequence once
speech input is over (this is an example of the sequential use of input devices). For the other
speech modes, selecting values can be performed in true parallelism with speech input.

Task: NLFeedBack&State (sentence, device)

User Action Interface Feedback Interface State
MouseCursor !! (spinning)
OMEarW !! (busy)
t>tprocess(sentence) (rs, rc) = Sphinx(

sentence)
OMEarW (ready)
MouseCursor -!! (idle)

device = :
Display (rs in RecognitionW)

case
rc ≠ OK:

Display (AlertW)
at center in Desktop
witht text “......”

rc = OK:
[∃s ∈ (R ↔ Slots(rs)) ∧

 IsSpecSlot(R,s) :
R’ = NewR(NextIdR)

Display (Form(R’))
with title “Request” • NbR
in Desktop ∀s ∈ R' :

IsSpecSlot (R', s) = F
SelR = R’
NextIdR = NextIdR+1
NbR = NbR+1

∀s ∈ Slots(rs) :
Display (SlotValue(s, rs)) in s
in Form(R')) IsSpecSlot (R', s) = T
]
[
∀s ∈ Slots(rs) ∧ ¬IsSpecSlot(R,s)

Display (SlotValue(s, rs))
in s in Form(R)) IsSpecSlot (R, s) = T

]
endcase

As Sphinx is processing the sentence (Sphinx(sentence)), the mouse cursor spins and the ear
icon is highlighted as busy. When speech recognition is over, the ear icon returns to the ready
state and the mouse cursor stops spinning. The result of the sentence recognition is modelled as
the couple (rs, rc) where rs denotes the recognized sentence and rc the return code. rc represents
the success or failure of the sentence recognition. If the sentence has been uttered (device =

), the recognised sentence is displayed in the recognition window. Depending on the value
of the code returned by Sphinx (i.e., rc), an alert window is mapped (rc ≠ OK) or the slots
referred in the sentence are filled up with the values specified in the utterance (rc = OK). In the
latter case, if at least one slot referred in the sentence has already been specified for the current
request (∃s ∈ (R ↔ Slots(rs)) ∧ IsSpecSlot(R,s)), a new request R' is created automatically and
its slots are filled in by the values specified in the sentence. (The designer has made the decision
that when using natural language, the user does not want to modify an already specified slot.)
On the other hand, if the slots referred in the sentence have not been specified previously for the
current request R, then these slots are filled in by the values specified in the sentence.

Task: ProduceSentence (sentence, fps, device) (is atomic)
User Action Interface Feedback Interface State

ProduceNonDeicticSentence
(sentence, fps, device)

ProduceDeicticSentence

(sentence, fps, device)

A sentence may or may not include deictic expressions.

Notation used below for the description of ProduceNonDeicticSentence and
ProduceDeicticSentence:

• denotes word concatenation.
BlaBla ::= ε ≠ (SlotId • SlotValue ListToken)
ListToken ::= Show me What about I would like ...
SlotId ::= ε From To Meal Departure ...
SlotValue ::= ε Pittsburgh Boston Morning ...
Deictics ::= * this here there ...
ShowMe ::= Show me

Terminals are shown in italic. Blabla may be empty or denotes any sequence of words distinct
from ListToken or from the concatenation of SlotId• SlotValue. ListToken is a sequence of
predefined words such as "show me" which means that the user is both specifying and
submitting the request.

Task: ProduceNonDeicticSentence (sentence, fps, device) (is atomic)

User Action Interface Feedback Interface State

case
fps = PARTIAL:

 BlaBla sentence = BlaBla
• (S l o t I d • SlotValue)∗ • (SlotId

• SlotValue)∗
• BlaBla • BlaBla

fps = FULL:
 BlaBla sentence = BlaBla

• (S l o t I d • SlotValue)∗ • (SlotId
• SlotValue)∗

• BlaBla • BlaBla
• L i s t T o k e n • BlaBla • ListToken

• BlaBla
• (S l o t I d • SlotValue)∗ (SlotId

• SlotValue)∗

fps = SHOWME:
 ShowMe sentence = ShowMe

end case

The ProduceNondeicticSentence task may take one of three forms. Either the user may specify a
partial or a full request or he may utter “show me” to submit the current active request.

Task: ProduceDeicticSentence (sentence, fps, device) (is atomic)

User Action Interface Feedback Interface State

case
fps = PARTIAL:

 BlaBla sentence = BlaBla
• (S l o t I d • SlotValue)∗ • (SlotId

• SlotValue)∗
• (Deictics • SlotId)+ • (Deictics • SlotId

)+
• (S l o t I d • SlotValue)∗ • (SlotId

• SlotValue)∗
• BlaBla • BlaBla

fps = FULL:
 BlaBla sentence = BlaBla

(• (S l o t I d • SlotValue)∗ (• (SlotId
• SlotValue)∗

• (D e i c t i c s • S l o t I d)+)+ • (D e i c t i c s
• SlotId)+)+

• BlaBla • BlaBla
• L i s t T o k e n • BlaBla • ListToken

• BlaBla
(• (S l o t I d • SlotValue)∗ (• (SlotId

• SlotValue)∗
• (D e i c t i c s • S l o t I d)∗)∗ • (D e i c t i c s

• SlotId)*)*

 BlaBla sentence = BlaBla
(• (S l o t I d • SlotValue)∗ (• (SlotId

• SlotValue)∗
• (D e i c t i c s • S l o t I d)∗)∗ • (D e i c t i c s

• SlotId)+)+
• BlaBla • BlaBla
• L i s t T o k e n • BlaBla • ListToken

• BlaBla
(• (S l o t I d • SlotValue)∗ (• (SlotId

• SlotValue)∗
• (D e i c t i c s • S l o t I d)+)+ • (D e i c t i c s

• SlotId)*)*

fps = SHOWME:
 ShowMe sentence = ShowMe

end case

Deictic expressions can be mixed with non deictic expressions. ProduceDeicticSentence must
include at least one deictic expression. This expression may appear before or after the
ListToken expression.

Task: SelR(R) (is atomic)

User Action Interface Feedback Interface State

IsVisible(Window(Form(R))):
SelRM1(R) S e l W =
Window(Form(R))
 SelAppli = MatisAppli
IsVisible(Icon(Form(R))): SelR = R
SelRM2(R)

Task: SelRM1(R) (is atomic)
User Action Interface Feedback Interface State

~[x,y in Window(Form(R))] ∨∧ w’! : w’-!
Window(Form(R))!
¬ IsMainMenu (MatisMenu):

Erase(SelAppliMenu)
Display (MatisMenu)
at topleft in Desktop

Task: SelRM2 (is atomic)

User Action Interface Feedback Interface State

~[x,y in Icon(form(R))]
∨∧ (t<tdoubleClick)∨∧) w’! : w’-!

Window(Form(R))!
¬ IsMainMenu (MatisMenu):

Erase(SelAppliMenu)
Display (MatisMenu)
at topleft in Desktop

Erase(Icon(form(R)))

To make a request R the current focus, it must be selected (SelR (R)). The method to select a
request depends on the current state of its associated form (Form(R)). The form may be either
visible or iconified. Thus SelR is the SelMatis task where the window and icon correspond to
the form of a request. In addition to SelMatis however, R is now the current request (SelR = R).

Task: ClrR (R) (is atomic)

User Action Interface Feedback Interface State

SelR = R: (OR Form(R)! :)
~[x,y in RecycleIcon in Form(R)] ∨∧ ∀s ∈ R: IsSpecSlot (R, s):

Erase (s)
FirstS(R) ! SelSlot (R) = FirstS(R)

∀s ∈ R :
IsSpecSlot (R, s) =

F

In order to clear a request R, R must be the current selected request (selR = R). If this condition
is satisfied, then the user can click the recycle icon of the request form of R. As a feedback,
every slot s of R that has been specified is cleared out (∀s ∈ R: IsSpecSlot (R, s) : Erase (s)).
The first slot of the request form is highlighted (i.e., the text cursor is placed at the beginning of
the slot entry). As for the system state, the current selected slot is the first one (SelSlot (R) =
FirstS(R)) and none of them has been specified (∀s ∈ R : IsSpecSlot (R, s) = F)

Task: HideR (R) (is atomic)
User Action Interface Feedback Interface State
SelW = Window (Form(R)) ? :
~[x,y in CloseBox in
 Window (Form(R))] ∨∧ Erase (Window (Form(R))

Display (Icon(Form(R)))
 at bottom in desktop SelW = Prev(Window)

The HideR task iconifies the window that supports the request form. To do so, the user clicks
the close box of the window that is associated to the form of R. The window is replaced by an
icon at the bottom of the desktop.

Task: SubmitR (R) is atomic

User Action Interface Feedback Interface State
SelR =R :

SendR (R)
(t < tSearch(R)) AbortR(R)

SendR (R) ShowResultR(R)

SubmitR consists of submitting the request to the system. To do so, R must be the current
selected request. SubmitR takes one of the two following forms: either the user sends the
request and aborts the request before the system has been able to provide an answer, or the user
sends the request and waits for the system to show the results. tSearch(R) is the time necessary
for the system to search for an answer.

Task: AbortR (R) is atomic

User Action Interface Feedback Interface State

BookIcon in Form(R)!! :
~[x,y in BookIcon in Form(R)] ∨∧ BookIcon in Form(R)!

MouseCursor -!!

A request may be aborted while the system is searching for an answer in the data base. As
shown in the description of “ShowResultR”, the ongoing computation is indicated to the user
with a special highlight of the book icon of the form associated to R (i.e., the wait sign). When
this condition is satisfied, then th e book icon may be selected.The book icon is highlighted (i.e.,
it shows as an opened book) and the mouse cursor stops spinning.

Task: SendR (R) is atomic

User Action Interface Feedback Interface State

~[x,y in BookIcon in Form (R)] ∨∧

SpecRSpeech (R, SHOWME)

SpecRKeyNL(R, SHOWME)

To send a request R one can either select the book icon of the form of R, use speech and say
“show me” or type “show me” in the recognition window.

Task: ShowResultR (R)

User Action Interface Feedback Interface State

[
(¬ (IsSpecSlot(R, FirstS(R)
∧
¬ IsSpecSlot(R, SecondS(R)):
Display (AlertW) in Desktop
with text “....” underspecified request
]

[
(IsSpecSlot(R, FirstS(R)

IsSpecSlot(R, SecondS(R)):
BookIcon in Form(R)!! (wait sign)
MouseCursor !! (spinning) Computation within the

Data Base
(t ≥ tSearch(R))
MouseCursor -!! (stop spinning)
Display (ResultForm(R))
at middle center in Desktop
Erase(Form(R))

case
NbR = 1 :
Display (Form(R’))
at middle left in Desktop R’ = NewR(NextIdR)

∀s ∈ R' :
IsSpecSlot (R, s) = F

SelR = R’
NextIdR = NextIdR+1

NbR > 1 : NbR = NbR -1
SelR = Prev(R)

endcase

Form (SelR) ! SelSlot (SelR) = ∅
SelW =

Window(Form(SelR))
]

ShowResultR (R) provides the user with an answer to request R. Two cases must be considered:
either the user has specified one of the “From” or the “To” slots of R or has not specified any of
them. If he has not specified any of the two mandatory slots, an alert window is mapped. In the

other case, the results are shown within a form associated to R (ResultForm(R)) whose title
includes the Id number of R. The request form is unmapped (UnMap (Form(R))). Then the
behaviour of the system depends on the number of ongoing requests. If there is only one request
(i.e., the request R), a new request form is created with a new Id number and this request
becomes active with empty slots. If there is more than one ongoing request, there is 1 request
less (NbR = NbR -1) and the previous focussed request becomes active. In both cases, the form
of the current request is highlighted and none of its slots is currently active.

3. An Evaluation of UAN

 3.1. Benefits from UAN

The first attractive feature of UAN is to provide the designer with a set of operators to specify
temporal relationships between tasks. In particular, the waiting facility as well as the parallel
and interleaving operators are improvements over the traditional AND/OR notation used in task
representation languages.

The second advantage of UAN is the explicit expression of the system state and system
feedback that result from user or system actions. The formalism used for this expression (i.e.,
the columns for user actions, interface feedback, and interface state) provides the designer with
a clear and natural layout to check logical links between inputs, outputs and the internal system
state relevant to the interface. From the system modellers perspective, the system state column
provides useful hints for modelling abstract entities in the user interface portion of the system.
For example, in Matis, variables such as NbR, the total number of ongoing requests, are
abstractions that must be maintained somehow by the user interface components. In the PAC-
Amodeus model, global state variables such as NbR, would be maintained by the top level agent
of the dialogue controller.

A third benefit from UAN is common to most formal notations. A formal description of the user
interface, as a UAN specification, opens the way to the automation of usability tests. For
example, through the UAN exercice for Matis, we have identified three rules that could be
embedded in an automatic UAN-based usability test tool:

• If preconditions for a task execution cannot be expressed in terms of user interface
feedback, then the observability principle is broken. For example, in Matis, preconditions
such as “SelR=R” (which is a system-centered description) can however be rephrased in
terms of perceivable user-centered features such as “Form(R)!”. On the other hand,
preconditions in tasks that involve natural language recognition such as SpecRNL, require
that the current active dictionary be the Matis dictionary (SelDictionary =
MatisDictionary). It turns out that this condition cannot be expressed in terms of user
interface features. As a result, the user is not provided with any feedback about the current
value of an internal system state variable that is relevant to the task. One possible
consequence is that the user may end up talking to Matis while Sphinx does not use the
Matis vocabulary and grammar. (We have personnally observed and made this “error” a
number of times!)

• If, for identical sequences of user’s actions and identical system feedback, feedback
occurs at different points in the user’s sequences, then system feedback triggering is not
consistent. For example, in one sequence, mouse down triggers a feedback such as a
reverse video while for the same sequence in a different task, the same feedback is

produced on mouse up only. This may correspond to a sound design decision or it may
not!

• If a feedback object exists as one instance at most, and if it is mapped by the system at
different locations on the screen, then system layout may be inconsistent. For example, in
Matis, the RequestTools window is always mapped at the same location. There is only one
instance of such window during a Matis session. On the other hand, request forms are
distinct instances of the request form class.They may be mapped by the system at distinct
locations to avoid overlapping, for example.

 3.2. Limitations

Limitations in UAN are concerned with the lack of a clear semantics and some deficiencies in
the power of expression.

As for semantics, our main concern is the temporal relationships between the descriptions in
the user action, the interface feedback and the interface state columns. The hypothesis is that
the execution of a description works on a row basis. Thus, when in row i, “statements” in
column “user action” are first considered, then those of the interface feedback column,
followed by those of the interface state. The first problem is a lack of definition for the notion
of statement (the spelling of one statement may physically cover several rows). The second
problem is that this simple algorithm applies to simple cases. More generally, a notation is
needed to express scope and relationships such as parallelism or sequentiality between the
columns.

For example, in the description of task StartMatis, “R1=NewR(NbR)” of the interface state
column must be executed before “Display (Form(R1))” specified in the interface feedback
column. On the other hand, in task StartOM, state change of OMICON can occur at the same
time as the modification of the interface state. In SetOMPref, the interface feedback is
implicitly comprised of 2 sets of reaction depending on the conditions of the user action
column. Nothing in the notation makes this explicit. A similar problem arises in task
ExitForm with the operator. In this example, we have repeated the operator in the
interface state to “visually” increase the mapping with the behaviour described in the user
action column.

As for expressiveness, we have encountered a number of difficulties. Some of them are listed
below : absence of a kill/break operator, no notion of “default task”, no attribute to denote the
actor of a task, lack of programming facilities such as control statements (e.g., conditional
and case statements), procedures, macros, scope, etc.

In [HG92], the notion of interruptibility is defined in the following way: “An instance of an
action, a2, is interrupted by another action, a1, if and only if a period of activity of a1
overlaps the lifetime of a2 but does not overlap a period of activity of a2” [HG92, p. 34]. The
lifetime of a task is the time interval spanning from the the start event to the end event of the
task. During this interval, the task may be idle or active. Returning to the notion of
interruptibility, when a2 is interrupted by a1, a2 becomes idle, a1 is active (i.e., executed),
then a2 is resumed. As shown in the specification of the top level task in Matis, one may need
to express the notion of break/kill or “ultimate interruptibility”: “An instance of an action, a2,
can be ultimately interrupted by another action, a1, if and only if the end event of a2 may be

equal to the start event of a1.” To this end, we have introduced the break/kill operator: ♠. As
an illustration, in the top level task, QuitMatis ultimately interrupts the central tasks that can
be performed with Matis.

A default task is a task that will be executed if another task or a set of tasks is not executed.
For example, designers may find it useful to specify that if a set of tasks is not performed by
the user (or the system), then a default task will be executed by the system (or the user).
Clearly, preconditions in UAN can be used to express the triggering of a default task but the
description would not be as explicit as the notion of “default”.

Originally, UAN, which stands for “User Action Notation”, was motivated by the explicit
representation of user’s actions. Although in [HG92], the authors claim that task descriptions
may include system tasks, there is no provision for the designer to specify so. In addition,
according to the “task migration” principle, the responsability for a task may be shared
between the user (or users) and the system. Thus, there is a need for designers to be able to
specify responsability explicitly. Note that the notion of default task is an example of task
migration.

Our experience with the representation of a working system like Matis shows that user
interface specification requires a Turing Machine equivalent description language. “If” and
“case” statements may be replaced by the operator. Clearly, this solution leads to chunking.
We have not analysed yet whether this chunking would play against or would positively
reveal a decomposition that would be psychologically valid or that would be useful for the
software architect. From our early experience with Matis, we have the feeling that the
absence of control statements leads to an artificial chunking that impedes the readibility of
the description. As a result, we have introduced case statements and conditional statements as
in NLFeedBack&State (“if ...then” statement is loosely represented by pairs of []). Similarly,
we have defined procedures such as NLFeedBack&State to alleviate the description and to
augment the consistency of the specification.

Scoping is not considered in UAN. In particular, variables that sustain the specification seem
global to the whole description. As a result, the state of the user interface is described as a
single global entity. It is useful however to be able to structure a description not only in
terms of tasks and actions but also in terms of programming language constructs. A potential
benefit for the software designer would be to derive subcomponents such as interactors or
agents, for example from the scope of variables. A set of variables with a same scope may
correspond to the local state of some interactor or agent.

UAN allows designers to specify low levels details of the interaction between users and
application starting from task decomposition. This implies that it seems more suitable to
describe and evaluate existing systems or to document the behaviour of the user interface rather
than to drive the modelling of the development of new systems.

4. LOTOS and UAN

It is interesting to compare LOTOS and UAN because they come from different areas (the
former from software engineering, the latter from human-computer interaction) but they are
based on similar concepts. Indeed both are concurrent notations and use actions: LOTOS
describes a system by its externally observable actions, UAN describes human-computer

interactions in terms of user actions and system feedback and these two groups of actions are
organized in tasks.

If we compare constructs of LOTOS [BB87] and UAN we can notice that UAN is more
powerful because it includes constructs such as one-way interleavibility (a task interrupts
another one which will be continued at its completation); waiting (a task is performed after a
delay of a specific number of units of time) and true parallelism which LOTOS does not
support: indeed the current version of LOTOS does not provide time-dependent constructs
and its semantics is an interleaving concurrency, also extensions in these directions are being
investigated.

However constructs of LOTOS are more formally defined: its operational semantics is
provided in terms of Label Transition Systems. So. it is difficult to understand if
specifications in UAN performed by using all its possible constructs can really work.

UAN describes an interaction in terms of tasks and actions. LOTOS describes a system in terms
of processes and actions. LOTOS processes may have their own state and synchronization with
other processes is explicit and detailed (e.g.,, on which gates they can synchronize and whether
they perform value passing). In UAN, there is only one generic interface state. Tasks cannot
synchronize among themselves and do not perform value passing: it is only possible to indicate
the ordering among their corresponding user actions and system feedback. The interface state
and its modifications are described in an informal way while the state of LOTOS processes is
descibed by the ACT ONE notation for algeabric data types.

5. From UAN Specifications to Agent Architectures
One open problem is how to refine the design of an interactor-based architecture of an
Interactive System from a UAN specification. In [P93] two possible approaches are
described: one approach, bottom-up, associates basic tasks with interaction objects and then
try to compose them in order to obtain the corresponding interactive system; the other
approach, top-down, as both interactors and tasks are concepts which can be applied at
different levels of abstraction, performs interaction objects refinement by reflecting the
performed task refinement.

First experiences indicate the second one as the most useful approach because in the first case
it is difficult, especially in complex interactive systems, to understand how to structure the
logical connections in the design of the interactive system starting from a flat set of
interaction objects associated with the basic tasks. While the task decomposition provided by
a UAN specification is a useful indication of the logical and temporal connections among
interaction objects which performs the related tasks.

While in [P93] the UAN approach is modified so that after performing task decomposition
the refinement of tasks into user actions and system feedback is driven by the specific
interactor model considered (which classifies the actions in terms of triggers, input and output
data between those which arrive from the user or the application side), here we start from a
UAN specification which do not refer to any architectural model and we try to use its task
decomposition to model the corresponding interactive system.

Some general heuristic rules found in the exercise include:

r1 - if a task can indifferently be refined into two interactions (sequences of users actions and
system feedback) then it can be performed by three interactors: one for each interaction and
one to gather the data which can be generated in one of the two possible interactions;

r2 - if one task is associated with only one action it should not have an entire interactor for it;

r3 - interaction with a window or with the related icon are described by the same interactor;

r4 - if the feedback of more tasks is related to the same graphical entities they should be
refined into the same interactor or in communicating interactors

The first demand in performing this exercise was to do a simple graphical representation of
the task decomposition. In the resulting tree we have a node for each task and the children of
one node are the tasks which are present in the father definition in both the user action or
system feedback columns. This is useful in order to have a compact description of the global
logical structure of the specification. The following picture represents the result (I added the
the SpecGform which is related to the interaction with the graphical form and which is not
yet present in your specification. To be replaced by SpecRFormFilling):

Fig.1 The tree-structure derived from the UAN specification.

The process of deriving an interactor-based interactive system from a UAN specification
consists in: identifying a set of interactors and indicate how to compose them. In this exercise
of modelling one element is to associate basic tasks (tasks which are defined in terms of
actions instead of other tasks) with the interactors describing the corresponding
implementation and to use the behavioural operators (parallelism, interleaving and so on)
among tasks also among the corresponding interactors. Another element is to use the task
decomposition for refining the corresponding model of the system.

In our case we can start from a one-interactor view of Matis: in this case, the input channels
from the user are the available physical devices (Mouse, keyboard and microphone), the
output toward the application are requests to the data base and the input from it are the result
of the user-requests.

Fig.2 A one-interactor view of Matis.

Then we can have a first refinement by the subtasks identified for the build request task
(BuildR) which is the main task for MATIS. in this analysis, we are considering a subset only
of the relevant tasks. For example, we are not considering tasks that are related to the OM
environment and other simple tasks such as the select request task and the hide request task.
So we can see the build request task as composed of the specification request task, the clear
request task and the submit request task. We can think of associating an interactor with each
of these tasks. The result of the submit_request interactor can be considered as an input
trigger for the specify_request interactor because when it occurs the latter sends a data to the
application. While the result of the clear_request can be considered as an input to the input
part of the specify_request interactor. This clears the appearance (what do you mean?)of the
current request as a feedback of the received input.

Fig.3 The next step refinement.

If we consider the specify_request interactor, further refinements are possible (Fig.4): we can
obtain an interactor associated with the request (R), one with the request form (GF), one with
the recognizer (Rec), one with the request tool (RT), one for each window tool that it can
activate (we consider only one, TW, for simplicity), one with the ear button (ear), one with
the send request button (SR), one with the clear request button (CR), one with the window
forproviding request by keyboard (Win), one for the window providing the result of a request
(AW). The request interactor (R) provides an output to the request form which visualizes the
values provided and an output to the application indicating the request selected by the user.
The request interactor can receive input data from the graphical form or the clear request
button or the recogniser.

One possible corresponding interactor-based architecture is shown in Fig.4.

Fig.4 A Further Refinement.

Interactors description
Referring to Fig.4, M, K and V are the physical devices (mouse, keyboard and voice-
microphone). Now we can describe each interactor more precisely in terms of their basic
functionalities.

R - Request Interactor
Input from the user side: values for defining a request to the data base;
Input trigger: send request command;
Output to the application side: a complete request for the data base;
Input processing: composition of values for a request to the data base;
Feedback toward the user (to GF): current received values;

GF - Graphical Form
Input from the user side: selection of a slot by mouse; receiving a value by keyboard;
Input trigger: whenever it receives an input data this is passed to R;
Output to the application side (to R): received values;
Input processing: composition of the received values;
Feedback toward the user: visualisation of received values;
Input from the application side (from R): values provided by keyboard or voice device;
Output to the user side: visualization of values provided by keyboard or voice device in the
graphical form;
Output processing: putting values into graphical slots;

RT - Request Tool
Input from the user side: mouse position;
Input trigger: button pressing;
Output to the user side (to TW): activation of the selected tool;
Input processing: identification of the tool selected;
Feedback toward the user: I dont know!

Ear -
Input from the user side: mouse position;
Input trigger: mouse pressing;
Output to the application side (to Rec): boolean event;
Input processing: no processing;
Feedback: highlighting of the icon;

SR - Send Request
Input from the user side: mouse position;
Input trigger: mouse pressing;
Output to the application side (to R): boolean event;
Input processing: no processing;
Feedback: no local feedback;

CR - Clear Request
Input from the user side: mouse position;
Input trigger: mouse pressing;
Output to the application side (to R): boolean event;
Input processing: no processing;
Feedback: no local feedback;

TW - Tool Window
Input from the user side: mouse position;
Input trigger: mouse pressing;
Output to the application side (to R): selected items;
Input processing: selection of the item indicated by the user;
Feedback:

Win - Textual input window
Input from the user side: string from keyboard;
Input trigger: confirm button;
Output to the application side (to Rec): the received string;
Input processing:
Feedback: the received string;

Rec - Recogniser
Input from the user side: sequence of words;
Input trigger: depends on the mode;
Output to the application side (to R): the recognised slots or values or commands;
Input processing: recogition of sequence of words which are correct for the Matis dictionary;
Feedback (to Win): the recognised words;

SA - Answer system
Input from the application side: the result of the request;
Output to the user side: a window with the result of the request;

SW - Warning system
Input from the application side: warning of underspecified request;
Output to the user side: a window with the warning of underspecified request;

References
[BB87] T.Bolognesi, H.Brinskma, "Introduction to the ISO Specification Language LOTOS',
Computer Networks and ISDN Systems, Vol.14, pp.25-59, 1987.
[HG92] H.R.Hartson, P.D.Gray, "Temporal Aspects of Tasks in the User Action Notation",
Human-Computer Interaction, 1992, Vol.7, pp.1-45.
[D93] D.Duke (editor), "System Modelling Exemplars", Technical Report SM/WP12,
ESPRIT BRA 7040 Amodeus-2, March 1993.
[CNS92] J.Coutaz, L.Nigay, D.Salber, "MATIS: A multimodal airline travel information
system". Technical Report SM/WP10, ESPRIT BRA 7040 Amodeus-2, Februray 1993.
[P93] F.Paterno', "A Methodology to Design Interactive Systems based on Interactors",
Technical Report SM/WP7, ESPRIT BRA 7040 Amodeus-2, February 1993.

Annexe1. Variables and functions used in the UAN description of MATIS

Variables
DefSpeechMode = a variable that represents the Default speech mode.
NbR = total number of ongoing requests.
NextIdR = next available request ID.
OM = the office manager for the speech and written natural language recognition system.
OMApplis = the set of applications that are currently supported by OM.
anOMAppli = any application supported by OM.
SelAppli = the current selected (Active) application.
SelAppliMenu = the main menu of the current active application.
SelDictionary = current active dictionary for OM
SelectedSlots = list of items selected with the mouse to solve deictic expressions that refer to
slots in the current natural sentence.
SelR = the current selected (active, focus) request.
SelW = the current selected (active, focus) window for MATIS.
SpeechMode = current speech mode for speech input (continuous, PressToStart, etc.)
XXIcon = denotes the icon displayed in the OM main window to designate application XX.
XXICON = denotes the desktop icon that results from the iconification of XX.
XXMenu = denotes the main menu for application XX.
XXItem = denotes item XX within a menu or a form.

Nota: the variables prefixed by “XX” could have been replaced by function definitions. For
example, “XXIcon” would be defined more formally as “Icon (XX)” where Icon is a function
that would return the icon Id of the icon displayed in the OM main window.

Functions
FirstS(r) = a function that returns the first slot of request r.
Form(r) = a function that returns the form used to display the request r.
IsExit (f, v) = a boolean function that returns True if value v is returned when exiting from form
f, false otherwise.
IsMainMenu (m) = a boolean function that returns True if m is the current main menu. (In the
NeXT environment, a main menu has the same role as the Macintosh menu bar.)
IsSlot (s) = a boolean function that returns True if item s selected on the screen corresponds to a
legal value for a slot, False otherwise.
IsSpecSlot (r, s) = a boolean function that returns True if slot s of r has been specified, False
otherwise.
IsVisible(p) = a boolean function that returns True if p is currently visible to the user, False
otherwise.
IsWindow (w) = a boolean function that retuns True is w is a window, False otherwise.
NewR(i) = function for creating a new request instance whose Id will be i.
SelSlot (r) = current selected slot in request r.
Value(p) = a function that returns the value that is rendered through perceivable object p.
Window(p) = a function that returns the window ID that supports p.

Time based variables and functions
tdoubleclick = threshhold between two successive mouse up that allows the system to detect
double clicks.
tload = time needed for loading OM.

tprocess(s) = time used by sphinx to process sentence s.
tready = time needed at launch time for sphinx to start.
tsearch(r) = duration of system search within the data base for request r.
twindow = duration of temporal windows; used by the system to solve speech and mouse
coreferences.

