
The AMODEUS Project
ESPRIT Basic Research Action 7040

AMODEUS Partners:
MRC Applied Psychology Unit, Cambridge, UK (APU)

Depts of Computer Science & Psychology, University of York, UK. (YORK)
Laboratoire de Genie Informatique, University of Grenoble, France. (LGI)
Department of Psychology, University of Copenhagen, Denmark. (CUP)
Dept. of Computer & Information Science Linköping University, S. (IDA)

Dept. of Mathematics, University of the Aegean Greece (UoA)
Centre for Cognitive Informatics, Roskilde, Denmark (CCI)

Rank Xerox EuroPARC, Cambridge, UK. (RXEP)
CNR CNUCE, Pisa Italy (CNR,CNUCE)

GIO Interactors and PAC-Amodeus:
Integration through the Dynamic Gesture System Exemplars

M.Bordegoni, J.Coutaz, G.P.Faconti, L.Nigay, D.Salber

23rd February 1994

Amodeus Project Document: System Modelling/WP27

Bordegoni, Coutaz, Faconti, Nigay, Salber sm_wp28

Amodeus: ESPRIT BRA 7040 page 1

Abstract

In this working paper, we use a 3D Drawing Editor (3DDE) as an integrating
material for the GIO (i.e., CNUCE) and PAC-Amodeus modelling approaches.
3DDE consists of a scene where the templates of some simple 3D objects are
shown. By picking any one of the templates a new instance of a
corresponding object is created and located in a space. Object instances can
be subsequently manipulated by means of either the hand input device or the
space-ball or the combination of both. We provide an overview of the
capabilities of 3DDE in terms of the M2LD classification space. The concepts
and principles of the M2LD framework is briefly introduced. We then present
the PAC-Amodeus architecture of 3DDE followed by the GIO interactors
description. The last section compares the two approaches and make explicit
mapping links between GIO and PAC-Amodeus.

sm_wp28 GIO Interactors and PAC-AMODEUS.....

page 2 Amodeus: ESPRIT BRA 7040

1 Introduction

The Dynamic Gesture System (DGS) is a software platform to develop
systems that support gesture as input. Gesture is specified as a sequence of
postures (hand poses) performed by using a dataglove. DGS is composed of
two parts: A Specification System used for defining poses and a Recognition
System in charge of recognizing poses.

Based on DGS, two exemplars have been developed to show its potential
applicability within 3D interfaces: a 3D Drawing Editor (3DDE) and a System
for navigating through a 3D building.

In this working paper, we use 3DDE as an integrating material for the GIO
and PAC-Amodeus modelling approaches. 3DDE consists of a scene where
the templates of some simple 3D objects are shown. By picking any one of
the templates a new instance of a corresponding object is created and
located in a space. Object instances can be subsequently manipulated by
means of either the hand input device or the space-ball or the combination of
both. In the following section, we provide an overview of the capabilities of
3DDE in terms of the M2LD classification space. In section 3, we present the
PAC-Amodeus architecture of 3DDE followed by the GIO interactors
description. The last section compares the two approaches and make explicit
mapping links between GIO and PAC-Amodeus.

2 Classifying 3DDE

In the following, we will classify 3DDE according to three complementary
perspectives: M2LD, O2LD and ULD. All of these classication schemes use a
common material: the notions of interaction language and physical device.
As specified in the glossary, an interaction language defines the set of well-
formed expressions, i.e., a conventional assembly of symbols, that convey
meaning. The generation of a symbol (or a set of symbols) results from a
physical action, i.e., an action on a physical device, whose manifestation is an
event. The message associated to this event is, precisely, a symbol (or a set
of symbols).

M2LD provides an overall rough static classification in terms of the number of
interaction languages and physical devices that the system supports for input
and output. O2LD and ULD adopt a dynamic perspective. O2LD provides a
classification based on the options among interaction languages and devices
that the system and the user have available at a given time. ULD analyzes
how these options may be combined.

Bordegoni, Coutaz, Faconti, Nigay, Salber sm_wp28

Amodeus: ESPRIT BRA 7040 page 3

2.1 A static point of view: M2LD

M2LD stands for Mono/Multi Language and Device. It allows the
characterization of a computer system in terms of the number of interaction
languages and physical devices that the system supports for input and output.
Let:

 di, be the number of distinct input devices provided by the system,
 do, be the number of output devices,
 li, be the number of distinct input interaction languages supported by the
system,
 lo, be the number of distinct output interaction languages.

In M2LD, the system is said to be:

 MonoDevice for input (or output) if di =1 (or if do =1),
 MultiDevice for input (or output) if di > 1 (or if do >1),
 MonoLanguage for input (or output) if li = 1 (or if lo=1),
 MultiLanguage for input (or output) if li > 1 (or if lo >1).

As shown in figure 1, 3DDE is:

 MonoLanguage and MultiDevice for input. The input language defines the
command structure for manipulating 3D objects:

[Command name, Parameter Values]
The input devices are the space-ball and the dataglove.

 MultiLanguage and Monodevice for output. There is one output language to
express the 3D graphical representation of the scene (composed of objects
such as cubes, cylinders, etc.). Another output language defines the cursor
shape which is modified according to the current active command. For
example, the hand cursor (used as the default cursor shape) becomes a
virtual tool such as a brush, when the current command is painting. The
cursor language is a very simple (no composition between symbols), but is
still a language since it defines a mapping between the notion of virtual tool
and an analogic shape. 3DDE uses one output device only: the screen.

sm_wp28 GIO Interactors and PAC-AMODEUS.....

page 4 Amodeus: ESPRIT BRA 7040

No

Yes

YesNo
Multiple Physical

Devices

Multi Lang
Mono Dev

Multi Lang
Multi Dev

Mono Lang
Multi Dev

Mono Lang
Mono Dev

3DDE
Input Interface

3DDE
Output Interface

Multiple Interaction
Languages

Figure 1: Location of the 3DDE in M2LD.

2.2 A dynamic point of view: O2LD and ULD classification
spaces

We now analyse the system from a dynamic perspective considering the
system in use at a given time.

2.2.1 O2LD classification space

O2LD , which stands for Obligatory/Optional Language and Device,
addresses the following two questions:

 The user has a well-formed intention: what are the choices with regard to
input devices and input interaction languages to express the intention to the
system?

 The system needs to render a concept or express a state change: does it
perform any choice with regard to output languages and output devices?

Applying an analytical approach, we adopt a global view of the system to
locate3DDE. 3DDE is:

 Obligatory Language and Optional Device for input. Since 3DDE is
MonoLangage for input, it cannot offer the user with any choice: it is an

Bordegoni, Coutaz, Faconti, Nigay, Salber sm_wp28

Amodeus: ESPRIT BRA 7040 page 5

Obligatory Language system for input. On the other hand, the user may have
choice between multiple input devices. For example, a selected object may
be moved, resized, rotated or zoomed using either the dataglove or the
space-ball. In this context (see glossary), the dataglove and the space-ball
are said to be equivalent (see glossary). In other contexts, the choice of the
input device is constrained. For example, an object selection must be
performed with the dataglove. In this case, we say that there is an assignment
relation between the device and the language (see glossary). More generally,
3DDE has been designed so that the dataglove is used to specify the
command name and the space-ball to specify parameter values. Thus,
although 3DDE is Multidevice for input, it imposes assignment constraints on
the usage of input devices depending on the current context.

In Figure 2, point "3DDE-input" denotes the location of 3DDE within the O2LD
space for input.

 Obligatory Language and Obligatory Device for output. Rendering in 3DDE is
based on two languages: one for the presentation of the 3D scene and one
for expressing the current virtual tool . Although the two languages are used
simultaneously (3DDE is MultiLanguage for output), the system does not
perform any choice between these languages. There is an assignment
relation between the output interaction language and the conceptual units of
the system. Since the system is MonoDevice for output, the system has no
choice about the physical support for rendering information. These
observations justify the location, "3DDE-output" in figure 2, close to the point
"Oblig. L Oblig. D".

sm_wp28 GIO Interactors and PAC-AMODEUS.....

page 6 Amodeus: ESPRIT BRA 7040

No

Yes

YesNo
Multiple Physical

Devices

Multi Lang
Mono Dev

Multi Lang
Multi Dev

Mono Lang
Multi Dev

Mono Lang
Mono Dev

Multiple Interaction
Languages

No Yes

No

Yes

Choice of the
Interaction
Language

Choice of the
Physical
Devices

Option L
Oblig. D

Option L
Option D

Oblig. L
Oblig. D

Oblig. L
Option D

3DDE-input

3DDE-output

M LD

O LD

2

2

Figure 2: Location of the 3DDE in the O2LD classification space. "3DDE-input" point is the location
of the 3DDE input interface and "3DDE-output" point the 3DDE output interface.

XX LAurence, je te laisse modiifer le fichier"

2.2.2 ULD classification space

We now consider the usage dimension of languages and devices at some
point in time by the system and by the user. Usage covers the absence or
presence of combination of languages or devices over time. We consider four
types of usage (see Figure 3):

 exclusive usage covers the sequential and independent use of languages (or
devices); languages (or devices) are not used simultaneously (sequential
use) and the expressions (or events) they convey are not combined
(independent use).

 concurrent usage denotes the parallel but independent use of languages (or
devices); languages (or devices) are used simultaneously (paralell use) but
the expressions (or events) they convey are not combined (independent use).

Bordegoni, Coutaz, Faconti, Nigay, Salber sm_wp28

Amodeus: ESPRIT BRA 7040 page 7

 alternate usage means sequential and combined use; languages (or devices)
are not used simultaneously (sequential use) but the expressions (or events)
they convey are combined. Typically coreferences between expressions
supported by different languages (e.g., 'put that there') requires combination.

 synergistic usage corresponds to the parallel and combined use; languages
(or devices) are used simultaneously (parallel use) and the expressions (or
events) they convey are combined.

Usage of languages (or devices) implies that at least two languages (or
devices) are available at some point in time. We observe that 3DDE is
MonoLanguage for input. Thus, the concept of "usage of input languages" is
irrelevant for 3DDE. As far as input devices are concerned, the user can use
them in a synergistic way, concurrently, or in an exclusive way.

 synergistic usage of input devices: The user can paint an object by pointing
at the object with the dataglove while modifying the color with the space-ball
(one button per color) (instant t1 on Figure 3). Also, an object can be created
by selecting an object model while modifying the shape of the object using the
space-ball (instant t2 on Figure 3). Here, two devices are used in parallel to
specify the command create (objectId, size, location) but note that each
device is assigned is a specific use (they are not equivalent).

 concurrent usage of input devices: This occurs when the user performs zoom
operations on the scene with the dataglove while moving a selected object
with the space-ball (instant t3 on figure 3). Two devices are used in parallel to
specify two independent commands.

 exclusive usage of input devices: This situation is illustrated by the following
sequence: the user selects an object using the dataglove. The space-ball can
then be used to rotate the selected object (instant t4 on figure 3).

 no alternate usage of input devices is supported by 3DDE. This is true if the
rotate, move, etc. commands are modelled as "rotate (angleValue)", "move
(dxdyValue)" and are applied to the global variable "current selected object".
If, on the other hand, these commands are defined as "rotate (objectId,
angleValue)", that is, if they require an explicit object id as a parameter, then
selection is not a full fledged command but an action whose effect must be
combined with the specification of other parameters. In this case, we would
assist to an alternate usage of input devices not an exclusive usage as
presented above. Here, the distinction relies on implementation criteria. It
may be the case however that an alternate usage from the system point of
view is mentally modelled by the user as an exclusive usage. An interesting
point to check for conformance mapping!

sm_wp28 GIO Interactors and PAC-AMODEUS.....

page 8 Amodeus: ESPRIT BRA 7040

As shown in figure 3, these observations (instant t1, t2, t3 and t4) suggest to
locate 3DDE input interface close to the synergistic point.

t1t2

No
Sequential

Yes
Parallel

No
Ind

epe
nd

ent
Yes

Com
bin

ed

Combined Usage
of Devices

Parallel Usage
of Devices

Alternate Synergistic

Exclusive Concurrent

t3t4

3DDE-input

Figure 3: Location of the 3DDE input interface in the ULD classification space.

 For output, two languages are simultaneously used by the system to render
two independent presentations: the 3D scene and the cursor shape. It then
implies a concurrent use of two output languages.

2.3 Summary

Input interface of 3DDE:

MonoLanguage, MultiDevice (M2LD)
Obligatory for Language, Optional for Device (O2LD)
Synergistic, Concurrent and Exclusive Usages of Devices (ULD)

Output interface of 3DDE:

MultiLanguage, MonoDevice (M2LD)
Obligatory for Language, Obligatory for Device (O2LD)
Concurrent Usage of Languages (ULD)

Bordegoni, Coutaz, Faconti, Nigay, Salber sm_wp28

Amodeus: ESPRIT BRA 7040 page 9

3 PAC-Amodeus architecture

Figure 4 shows one possible PAC-Amodeus software architecture for 3DDE.
We are aware that this proposal is rather sketchy but will be analyzed further
later on.
The LLIC component receives hand events from the user and abstracts them
in terms of poses. Similarly, space-ball events are abstracted in terms of
location and button selections.
The Gesture recognition engine of the PTC component receives the poses
and defines the dynamic gesture. To each dynamic gesture is associated a
command. The vehicle of the command is a melting-pot object.
Symmetrically, space-ball events are abstracted in terms of command, stored
in a melting-pot object.
The DC is composed of a two-level hierarchy of PAC agents. The leaves of
the hierarchy correspond to the 3D objects of the scene as well as to the
space-ball which is special case of a graphics object.
The FCA maintains the mapping function between objects of the Functional
Core and the objects of the DC. For example, the FC contains the description
of a bedroom expressed in meters. The DC manipulates objects in
centimeters. In this particular case, the AFC would perform scale mapping.

Figure 4 highlights message passing for the painting synergistic command
using the dataglove while changing the color by clicking a button of the
space-ball. Figure 5 makes explicit the actions of the fusion engine on the
melting-pot objects within the dialogue controller.

sm_wp28 GIO Interactors and PAC-AMODEUS.....

page 10 Amodeus: ESPRIT BRA 7040

Dialogue Controller (DC)

Presentation Techniques Component
(PTC)

Dataglove
driver

Lexical feedbacks
Button # = color #

Gesture # =
Virtual tool

cursor shape #

Hand feedback

Functional
Core (FC)

Description of the
3D Scene

For example a
bedroom

Functional Core
Adaptator (FCA)

Low Level Interaction Component
(LLIC)

Gesture
Recognition

Space-ball
parser

Graphical Objects
Presentation
(on screen)

meters

centimeters

Graphical
Context

...
Space-ball

Cube

Cylinder

Red

Paint
Obj

Space-ball
driver

Button #α Pose #β
x,y,z

Ask for object at
(x,y,z)

Syntactic feedback

Gesture #γ

Figure 4: PAC-Amodeus architecture of the 3DDE.

Bordegoni, Coutaz, Faconti, Nigay, Salber sm_wp28

Amodeus: ESPRIT BRA 7040 page 11

Red
Paint
Obj Red

Paint
Obj

Fusion engine

Figure 5: Dialogue Controller: Fusion engine.

4 GIO Interactors
In this section a description of the 3DDE system is presented in terms of GIO
interactors. The specification is quite general and needs further refinement;
however it gives an idea of the underlying methodology and also presents
concepts that are used to compare the GIO and PAC approaches in the next
section.
We start by considering the major components that make up the system:
 Functional Core that exchanges with the user interface four different types of
information through an equal numer of communication channels (or gates):

 scene to direct the presentation of the objects in the scene,
 g_out to direct the presentation of the dataglove feedback,
 s_out to direct the presentation of the spaceball feedback,
 g_in to receive input from the gesture system,
 s_in to receive input from the spaceball,
 gs_in to receive the combined input from the spaceball and the gesture

system.
 I_Scene the interactor responsible for presenting the scene through the
p_scene gate,
 I_Spaceball the interactor responsible for handling the input from the
spaceball and its feedback. It receives input from the user through the
i_spaceball gate and from the functional core through the s_out gate,
presents output through the p_spaceball gate, and gives input either to the
functional core or the I_Fusion interactor through the s_in gate,
 I_Gesture the interactor responsible for recognizing the gesture and
presenting the appropriate feedback. It receives input from the I-Pose
through the i_posture gate and from the functional core through the g_out
gate, presents output through the p_glove gate, and gives input either to the
functional core or the I_Fusion interactor through the g_in gate,

sm_wp28 GIO Interactors and PAC-AMODEUS.....

page 12 Amodeus: ESPRIT BRA 7040

 I_Pose the interactor responsible for recognizing the postures. It receives
input from the user through the i_glove gate and delivers postures to the
I_Gesture interactor through the i_posture gate,
 I_Fusion the interactor responsible for combining the input from the spaceball
and the gesture system received respectively through the s_in and the g_in
gates
I_Scene is a concretizing interactor missing of the abstraction components,
I_Pose and I_Fusion are abstracting interactors missing the concretization
components, and I_Spaceball and I_Gesture are full interactors including
both abstraction and concretization components.
Figure 6 presents the composition of interactors modelling 3DDE. Such a
composition highlights the flow of the data within the system.

Bordegoni, Coutaz, Faconti, Nigay, Salber sm_wp28

Amodeus: ESPRIT BRA 7040 page 13

Functional Core

scene s_out s_in gs_in g_out g_in

p_scene

I_Scene
e

I_Fusion

I_Spaceball I_Gesture

s_in g_in

i_spaceball p_spaceball p_glove
i_posture

i_glove

I_Pose

Figure 6: Interactors modelling the 3DDE.

sm_wp28 GIO Interactors and PAC-AMODEUS.....

page 14 Amodeus: ESPRIT BRA 7040

The corresponding LOTOS behaviour expression derived from figure 6 is:
(

(
Functional Core [s_in, g_in, gs_in, scene, s_out, g_out]
|[gs_in]|
I_Fusion [s_in, g_in, gs_in]
)
|[s_in, g_in, s_out, g_out]|
(

I_Spaceball [i_spaceball, s_out, p_spaceball, s_in]
|||
(

I_Gesture [i_posture, g_out, p_glove, g_in]
|[i_posture]|
I_Pose [i_glove, i_posture]

)
)

)
|[scene]|
I_Scene [p_scene, scene]

Behavioural constraints are further applied to the above specification in order
to meet the interactional requirements of 3DDE. Following the GIO
methodology, this is achieved by localizing the specification and considering
only the subset of interactors whose behaviour needs to be constrained.
Lets consider the synergistic usage of input devices to paint an object
selected by pointing at it with the dataglove while modifying the color with the
space-ball. In this case the I_Fusion interactor is required to combine together
the color selection made by pressing one of the spaceball buttons with the
object selection made by means of the dataglove. The fusion is allowed within
a temporal window within which both the s_in and the g_in actions must be
performed involving the I_Spaceball, the I_Gesture, and the I_Fusion
interactors. A controlling agent is required expressing exactly that behaviour.
This is achieved by the following fragment of specification:

(

I_Fusion [s_in, g_in, gs_in]

|[s_in, g_in]|

Bordegoni, Coutaz, Faconti, Nigay, Salber sm_wp28

Amodeus: ESPRIT BRA 7040 page 15

(

I_Spaceball [i_spaceball, s_out, p_spaceball, s_in]

|||

I_Gesture [i_posture, g_out, p_glove, g_in]

)

|[s_in, g_in]|

ControllingAgent [s_in, g_in]

where the behaviour of the ControllingAgent is:

ControllingAgent [s_in, g_in] ::= urge s_in, g_in in

time timeout (waittime) in

s_in; (g_in [] timeout)

[]

g_in; (s_in [] timeout)

The above fragment of specification can be graphically represented as in the
following figure:

The above fragment of specification can be graphically represented as in the
following figure:

sm_wp28 GIO Interactors and PAC-AMODEUS.....

page 16 Amodeus: ESPRIT BRA 7040

s_out

gs_in

I_Fusion

I_Spaceball I_Gesture

s_in g_in

i_spaceball p_spaceball p_glove
i_posture

g_out

Controlling Agent

Figure 7: Applying constraints to the interactors modelling the 3DDE.

 5 Integrating the two approaches
The GIO model of interactors is based on the process algebra approach
underlying the LOTOS notation. It is used to formally describe the behaviour
of a User Interface System from a high level of abstraction to low level details
by means of successive refinement steps. Similarly, the PAC model can be
used to recursively describe the organization of a User Interface System at
any level of detail by taking an approach leading to a real implementation of
such a system. PAC-Amodeus integrates technical constraints due to the
existence of toolkits within the conceptual PAC approach. As a result, in PAC-
Amodeus, agents are used to model the keystone component of the computer
system.
The goal pursued by GIO is to prove behavioral properties of User Interface
Systems resulting from the composition of several interactors. For example,
GIO can show how the use of different physical devices (such as a dataglove
versus a mouse or a spaceball) in a User Interface might lead to different
system behaviours. The goal pursued by PAC and PAC-Amodeus is not to
prove properties about a particular architecture but to help the software
designer to specify a global conceptual software architecture that matches the
external specifications of a computer system.
Apart from the overall motivation driving the two different approaches, a major
difference between GIO interactors and PAC agents is concerning the
structuring of their components. It is interesting to remark that such a

Bordegoni, Coutaz, Faconti, Nigay, Salber sm_wp28

Amodeus: ESPRIT BRA 7040 page 17

difference is induced by common driving principles in defining a GIO
architecture or a PAC/PAC-Amodeus architecture. Reusability is one of such
principles. A GIO interactor is essentially a composition of processes able to
abstract and concretize respectively user and system generated tokens by
following a hard-wired predefined behaviour: that is the controller of an
interactor is simply defined by the syncronization occurring amongst its
components. One heuristics adopted by the GIO designer to augment
reusability is to use external controllers. A controller is an agent whose role is
to define constraints on the sequences of observable input and output events
an interactor can be engaged with. In other words, interactors are lego-like
components externally customized by controllers. A similar reasoning applies
to PAC. A PAC agent has exactly the same role as a GIO interactor.
However, GIO controllers correspond to PAC agents whose presentation and
abstraction parts are empty. Whereas PAC blurs the distinction between the
notions of levels of abstraction and control, GIO makes it explicit: in PAC,
agents which are not leaves in the hierarchy, are abstracting/concretizing
processes or controllers of the information flow.
In the GIO model, the low level interators are the only agents that can engage
interaction directly with the user. In PAC-Amodeus, this is not necessarily
true. In addition to the vertical abstraction/concretization process, one can
exploit an horizontal abstraction-concretization mapping facility: the abstract
and presentation facets of the agent are then partially/totally implemented in
the Functional Core Adaptor or the Presentation toolkit component. This is an
example of how a conceptual model can be engineered to consider the
existence of implementation tools in a realistic way.
We have identified two rules that may clarify the correspondence between the
GIO and PAC approaches. Rule 1 shows how a GIO interactor or a set of
GIO interactors match a PAC agent depending on their input an output
facilities. In the top left column of Rule1, a full interactor with an optional
controller is equivalent to a complete PAC agent. In the midle left, an
interactor with no concretization and an optional controller is a PAC agent
with no P facet. In the bottom left, an interactor with no abstraction output and
no concretization input corresponds to the root agent of he hierarchy (we
have reached the highest level of abstraction). In the right column of rule 1, a
hierarchical composition of interactors may be bundled into one PAC agent
(because the implementation tools that are available for the system provides
the low level functionality covered by the low level interactors).

sm_wp28 GIO Interactors and PAC-AMODEUS.....

page 18 Amodeus: ESPRIT BRA 7040

Rule 1:
One interactor or a linear set of interactors with optional controller = one PAC

agent

=
=

=

= Root

As shown by Rule 2, a GIO controller linking two otherwise independent
interactors is modelled in PAC as an agent whose competence is to control
the two agents.

Rule 2:
Two interactors linked by a controller = Two PAC agents, sons of one PAC

agent

A
B

C

A
B

C

Bordegoni, Coutaz, Faconti, Nigay, Salber sm_wp28

Amodeus: ESPRIT BRA 7040 page 19

1. Tables used in the Dynamic Gesture System

The Input-Action Handler contains the following table, for mapping the gesture id
used by the Gesture System and the function name associated with. The function
name is then sent to the application.

gesture id function name

#1 create
#2 paint
#3 connect SB
#4 delete
#5 scene zooming
#6 scene rotating

The Input-Action Handler also includes another table for mapping a recognized
gesture (or pose) into a cursor (virtual tool).

gesture id cursor (parameters)

no gesture hand
#1 "application"
#2 brush (color)
#3 "application"
#4 rubber
#5 hand
#6 hand

The Feedback System is then in charge of visualizing the cursor associated with the
gesture being recognized. If no gesture is recognized, a rendered hand is visualized.
Sometimes, the visualization of the cursor is left to the application. For example, that
happens for the "create" function. In this case, the cursor takes the shape of the 3D
object being created, and selected either picking it up or selecting the Spaceball
buttons. It is up to the application to show the proper cursor according to the selected
object.
In some other cases, some parameters used for displaying the cursor are sent by the
application to the Gesture System. That happens, for example, for the "paint"
function. The brush color is decided by the application and communicated to the
Gesture System.

sm_wp28 GIO Interactors and PAC-AMODEUS.....

page 20 Amodeus: ESPRIT BRA 7040

The application uses the following table for associating a function with other
parameters and for sending some information to the Gesture System.

function name event information to GS

paint SB button 1 color :: red
SB button 2 color :: blue
SB button 3 color :: green
SB button 4 color :: yellow

