
The AMODEUS Project
ESPRIT Basic ResearchAction 7040

AMODEUS Partners:
MRC Applied Psychology Unit, Cambridge, UK (APU)

Depts of Computer Science & Psychology, University of York, UK. (YORK)
Laboratoire de Genie Informatique, University of Grenoble, France.(LGI)
Department of Psychology, University of Copenhagen, Denmark. (CUP)
Dept. of Computer & Information ScienceLinköping University, S. (IDA)

Dept. of Mathematics, University of the Aegean Greece (UoA)
Centre for Cognitive Informatics, Roskilde, Denmark(CCI)

Rank Xerox EuroPARC, Cambridge, UK.(RXEP)
CNR CNUCE, Pisa Italy (CNR,CNUCE)

Extending the Scope of PAC-Amodeus to Cooperative Systems

 Salber D., Nigay L. & Coutaz J.
Laboratoire de Génie Informatique, University of Grenoble

October 1994

Amodeus Project Document: System Modelling/WP 45

2

Extending the Scope of PAC-Amodeus
to Cooperative Systems

Daniel Salber, Laurence Nigay, Joëlle Coutaz

Laboratoire de Génie Informatique, LGI-IMAG
BP 53, 38041 Grenoble Cedex 9, France
Tel. +33 76 51 48 54, ���+33 76 51 44 40

E-mail: {Daniel.Salber, Joelle.Coutaz, Laurence.Nigay}@imag.fr

Position paper for the CSCW’94 workshop on “Software architectures for cooperative systems”.

1. INTRODUCTION

Software tools for the construction of interactive
systems such as user interface toolkits, application
skeletons, and user interface generators, alleviate the
activity of programming but do not eliminate software
architecture modelling. For example, the "callback"
mechanism made popular by X-Window, does not
enforce the distinction between domain-specific
concepts and presentation-specific issues. Without a
framework for prescribing the appropriate usage of
callbacks, the software designer may develop an
interactive system that cannot be maintained nor
modified. Cooperative systems, which draw upon a wide
variety of tools, techniques, and constraints, make
architecture modelling even more crucial.

In order to reason about software modelling for
cooperative systems, we first need to clarify the nature
of the problem space. The role of a problem space is to
identify the set of concepts relevant to a particular
domain of interest and to organize these concepts into a
framework suitable for rising the appropriate questions,
for clarifying the scope of the solution space, or for
characterizing a particular design solution. The
litterature reveals a wide variety of issues related to
CSCW but these concepts are not organized in a way
that supports software architecture modelling. We claim
that one goal of the workshop is to define a problem
space useful for reasoning about software architecture
and use this framework as foundations for comparing,
devising, and assessing current and future architecture
models.

In section 2, we present a draft proposal of the problem
space for the software design of cooperative systems. In
section 3, we describe PAC-Amodeus, our own
conceptual architecture model, and show how it can
support the issues made explicit in our problem space.

2. A PROBLEM SPACE FOR THE SOFTWARE
DESIGN OF CSCW

Figure 1 shows our early attempt to organize the
concepts related to CSCW into a problem space useful
for modelling the architecture of cooperative systems.
We do not claim exhaustiveness but propose a starting
point for discussion and refinement during the
workshop.

Services

Responsability

Dynamicity

Levels of
abstraction Granularity

Parallelism

Distribution

Constraints&
Requirements

Figure 1: Problem space
for the software design of CSCW.

The very first dimension to consider covers the services
that cooperative systems are able or should be able to
support. These are, but are not limited to, access control
and authentification, quality control over the
communication media, communication mechanisms and
policies, and group support. Clearly, access control,
quality control, and so on, are flag names that must be
refined appropriately. In particular, “group support”
encapsulates the notions of user, role, group memory,
etc.

The second dimension expresses the responsibility for
ensuring a particular service. The service (say access
control), may be performed by the users themselves, not
by the system. Timbuktu’s shared-mouse mode
[Farallon 87] is a typical example of “social control”.
Alternatively, responsibility for the service may be
shared between the users and the system, or may be

3

performed by several components of the system at some
level of abstraction. In the Cavecat mediaspace [Mantei
91], the definition of the connection rights is shared
between the users and the system: users are in charge of
setting their level of availability whereas the system
decides which connection types are allowed for a given
level of availability. In some communication systems
such as Unix’s talk command, connection acceptance is
performed socially (e.g., on the fly reject) while in
others such as in Rave [Gaver 92] acceptance is purely
technical.

Dynamicity covers the capacity of the system to support
changes during a session. For example, for a given
service (say role assignment and access control), it
expresses the capacity of the system to support dynamic
changes in role assignment and access control. Coupled
with the responsibility axis, it means that responsibility
for modification may (or may not) migrate dynamically
between the users, or between the users and the system,
or even between the components of the system at some
level of abstraction. For example, in Timbuktu, floor
control can migrate between the participants. In Cavecat
responsibility for connection acceptance is shared but is
static. In EuroCODE [Bellotti 93], a user “A” may
observe that another participant “B” is busy but will
accept glance connections from “A”. Although
authorized by “B”, “A” may decide not to glance at “B”.
Because participants availability is made observable by
the system, connection control can migrate dynamically
between the technical and the social modes.

Services, such as access control and communication
mechanism, may be performed at multiple levels of
abstraction ranging from the facilities provided by the
operating system to special purpose policies
implemented in the functional core. Others, such as
device independence, may involve a very specific level.
The levels of abstraction of the Arch model [UIMS 92]
augmented by the underlying operating system, provide
a possible basis for structuring this axis. Clearly,
depending on the stage in the reification process, the
software designer may need to refine the operating
system slot into the set of abstract machines at hand
(typically, distributed object oriented systems such as
GUIDE [Krakowiak 90] offer higher level services than
traditional multiprocess systems such as Unix). Coupled
with responsibility and dynamicity, one can express, for
a particular service, the capacity of migration between
the levels of abstraction of the system. Thus, migration
may occur among the actors of the services (as discussed
above) as well as between the levels of abstraction of the
software components.

Granularity is also a general issue: “How big is a
chunk?” [Simon 84]. Applied to group support, it
expresses the size of the group. Coupled with
dynamicity, we cover the dynamic change of the number
of participants in a session. (If so, the system must
include a service for group memory such that
newcomers can get to the current state of the task.)
Granularity is also relevant to access control: at some

level of abstraction, what is the coverage of the
protection mechanism? For example, in an object-
oriented operating system, does sharing use objects as
the unitary scope, or does it use a finer grain such as
object methods? In a cooperative system like MMM
[Bier 92], sharing at the method level can facilitate the
implementation of functions that allow multiple users to
modify the same object synchronously: while one user
changes the color of a rectangle, another one can resize
the same rectangle or two users may modify the size of
the rectangle using opposite corners. In the latter case,
the same method is activated simultaneously but with
distinct parameters.

Parallelism is a general phenomenon that is not specific
to CSCW but useful to express the temporal
relationships of the activities performed by the actors of
the task (i.e., the users and the software components of
the system). When considering the users, it expresses the
capacity of synchronous or asynchronous collaboration
or, when dynamic, the variation between these modes
which may be unpredictable [Grudin 94]. As for the
software components, one can refer to the description of
the MSM framework we have developed for multimodal
interaction [Coutaz 93].

The actors are characterized by their topological
distribution. For users, one may ask whether they are in
the same room or not, or a mixture of both as in
teleconferencing. Coupled with dynamicity, distribution
expresses the capacity of users to change location as in
ubiquitous computing. Location may thus be
unpredictable [Grudin 94]. The distribution of software
components over the network covers the litterature on
software architecture for distributed systems including
the two extremes, centralized vs. replicated. Coupled
with dynamicity, location may vary over time. As
observed by Bentley et al, [Bentley 94], architecture for
CSCW sits between the two classical extremes. We do
support this idea and claim that the “slinky” metaphor
used for the distribution of semantics across the levels of
abstraction of a system applies as well to the distribution
of the location of the system components. As for
semantics, distributing code relies on careful and
experienced engineering tradeoffs. Constraints and
requirements provide the driving force for selecting
informed trade-offs.

Constraints and requirements are setup early in the
development process. They cover the description of the
hardware and software tools used for implementing the
system. For example, the underlying infrastructure may
be heterogenous and may show variability in
performance. Requirements include the quality plan
which specifies the factors and properties that the system
should satisfy. In addition to software engineering
factors such as portability and reliability, we must
recruite HCI-centered criteria such as response time
stability, observability, honesty and other general
properties such as those presented in [Abowd 92]. All of
them may have a direct impact on the nature of the
services to be provided, on their distribution, on their

4

level of abstraction, etc. For example, if response time
stability is required, one may want to explore replication
of the service augmented with semantic delegation
(capacity of the user interface to handle domain-
dependent functions and concepts).

3. PAC-AMODEUS AND ITS INTERPRETATION TO
SUPPORT CSCW SOFTWARE DESIGN

3.1 PRINCIPLES OF PAC-AMODEUS

PAC-Amodeus [Nigay 91] blends together the Arch and
PAC [Coutaz 87] conceptual models. The Arch model
has the nice feature of considering engineering reality
such as trade-offs between software criteria and the
constraints imposed by implementation tools (e.g.,
Motif) or the pre-existence of a functional core. The five
components structure of Arch includes two component
adapters which allow the software designer to insulate
the key component of the user interface (i.e., the
Dialogue Controller) from the variations of the
functional core and implementation tools.

The Arch model however, does not provide any
guidance about the decomposition of the Dialogue
Controller nor does it indicate how features such as
parallelism can be supported within the architecture.
PAC, on the other hand, stresses the recursive
decomposition of the dialogue controller, in terms of
agents, but does not pay attention to engineering issues
such as the existence of implementation tools. PAC-
Amodeus gathers the best of the two worlds. Figure 2
shows the resulting structure.

Interface
with the Functional Core

Functional Core

Presentation Techniques
Component

Low Level Interaction
Component

Domain Objects Interaction Objects

Conceptual
Objects

Language dependent

Device dependentDomain dependent

Presentation
Objects

Dialogue Controller

A P
C

Figure 2: The PAC-Amodeus
software architecture model.

PAC-Amodeus goes one step further than Arch in two
ways:
(1) it makes explicit the boundaries of the Presentation
Techniques and the Low Level Interaction components
using the notions of physical device and interaction
language as defined in [Nigay 94]. (A device, e.g., a

keyboard and a screen, is an artefact that acquires or
delivers information. An interaction language such as a
pseudo natural language and direct manipulation
languages defines a set of well-formed expressions that
convey meaning.) The Low Level Interaction
Component is necessarily device dependent and
language dependent; the Presentation Techniques
Component is device independent but language
dependent; the other components of the interactive
system, including the Dialogue Controller, are both
device and language independent
(2) PAC-Amodeus decomposes the Dialogue Controller
into a set of co-operative PAC agents. This set is derived
for a particular system using the heuristic rules presented
in [Nigay 94]. In a nutshell, a cluster of agents is used to
support a user’s task. Interleaved and parallel tasks
derived by a task analysis, are modelled as clusters of
co-operating agents. Clusters of hierarchical agents are
convenient ways of modelling the abstraction/rendering
func t ions mentioned in the MSM framework
[Coutaz 93].

3.2 APPLYING PAC-AMODEUS TO COOPERATIVE
SYSTEMS

The PAC-Amodeus model can then be extended to be
applied to cooperative systems. A straightforward way is
to replicate the arch for each user. But this approach
may lead to unnecessary duplication of software
components and it doesn’t make explicit the
communication between components at the same level
nor the sharing of the components between the users.
The framework introduced in section 2 provides
valuable input to decide which components should be
shared (or not) and which components should
communicate with each other at a given level of the
arch. Basically there are three ways a given level of the
PAC-Amodeus model can be arranged: common,
coupled, or decoupled as shown in figure 3.

YesNo

decoupled common
coupled

Levels of
sharing

Figure 3: Sharing a PAC-Amodeus component.

A component of the model is put in common when it is
shared by multiple users. This is the case of the
functional core component for collaborative editors: all
users manipulate the same common document and the
functional core, which handles access to the document
can thus be shared. This is the approach that has been
adopted by ALV [Hill 92]. However, other components
such as the Low Level Interaction Component (LLIC) at
the other end of the arch can also be shared: in
Timbuktu’s shared-mouse mode, users share the same
pointer. Since the LLIC handles device-level interaction,
putting the LLIC in common is a convenient way to
achieve device-sharing.
It is important to note that when a component is
common in the conceptual architecture, it does not
necessarily mean that there is a unique component in the

5

software implementation. Although this is a reasonable
approach for the functional core (this is the classical
centralized CSCW model), performance reasons would
forbid this for the LLIC. Actually a common LLIC in
the model may mean that the LLIC is replicated on each
user’s machine and that the LLICs communicate to
maintain consistency between themselves. These
implementation issues are also very dependent on the
underlying operating system support (e.g., distributed
operating system, communication facilities) as expressed
by the constraints and requirements axis of the
framework of section 2.

Components in a given level of the PAC-Amodeus
model are coupled when they have to maintain some sort
of consistency. The typical case is the necessity for
feedthrough, i.e., each user must be aware of the other
users’ actions. For example in the SASSE collaborative
text editor [Baecker 92], each user is made aware of the
position of the other users in the document through a set
of scrollbars. Each scrollbar reflects the position of
another user. However, the scrollbars are not shared for
input and each user may only manipulate his own
scrollbar. This is a case where a component is not
common as in the above examples, but there is some
coupling between the software components that are in
charge of the scrollbars. Any change in one of the
scrollbars is reflected in the other scrollbar-handling
components. The coupled components maintain a looser
consistency than common components.

Lastly, components for different users may be
decoupled. This is the simple case where there is no
sharing. At a given level of the PAC-Amodeus
architecture, the components are distinct; they function
independently and there is no communication between
them. For example, in a simple collaborative drawing
editor where all users work on the same document but
there is no other sharing, the LLICs will be decoupled:
each user will have his own local copy of the LLIC.

These three different levels of sharing happen at a global
level in the software architecture. If we go into the
details of the sharing of a component, we can discover
that there are many different ways to share a component:
there are many possible combinations to link the set of
inputs to the set of outputs. These possible combinations
are still an area of investigation.

4. ACKNOWLEDGMENT

This work has been supported by project ESPRIT BR
7040 Amodeus 2 and by PRC Communication Homme-
Machine.

5. REFERENCES

[Abowd 92] G. Abowd, J. Coutaz and L. Nigay.
Structuring the Space of Interactive System Properties,
in Proceedings of the IFIP TC2/WG2.7 Working

Conference on Engineering for Human-Computer
Interaction, Ellivuori, Finland, pp. 113-128.
[Baecker 92] R. M. Baecker, D. Nastos, L. R.
Posner, L. K. Mawlby. The user-centered iterative
design of collaborative writing software, in Proceedings
of the Workshop on Real Time Group Drawing and
Writing Tools, CSCW’92, Toronto, 1992.
[Bellotti 93] V. Bellotti, EuroCODE AV Exemplar,
Amodeus Esprit Project document ID/IR 6, 1993.
[Bentley 94]R. Bentley, T. Rodden, P.
Sawyer, I. Sommerville. Architectural Support for
Cooperative Multiuser Interfaces, IEEE Computer, May
1994.
[Bier 92] E. A. Bier and S. Freeman. MMM: A
user interface architecture for shared editors on a single
screen, in Proceedings of the UIST’91 Symposium on
User Interface Software and Technology, pp. 79-86.
[Coutaz 87] J. Coutaz. PAC, an Implemention
Model for Dialog Design, in Proceedings of Interact'87,
Stuttgart, September, 1987, pp. 431-436.
[Coutaz 93] J. Coutaz, L. Nigay, D. Salber. The
MSM Framework: A Design Space for Multi-Sensori-
Motor Systems, in Proceedings of the East-West HCI’93
Conference, Moscow, 1993.
[Farallon 87] Farallon Computing Inc. Timbuktu
User’s Guide, 1987.
[Gaver 92] William Gaver, Thomas Moran, Allan
MacLean, Lennart Lövstrand, Paul Dourish, Kathleen
Carter, William Buxton. Realizing a Video
Environment: EuroPARC’s Rave System, in
Proceedings of the SIGCHI’92 Conference, ACM Press,
pp. 27-35.
[Grudin 94] Jonathan Grudin. Computer-Supported
Cooperative Work: History and Focus, IEEE Computer,
May 1994.
[Hill 92] R. D. Hill. The Abstraction-Link-View
Paradigm: Using Constraints to Connect User Interfaces
to Applications, in Proceedings of the SIGCHI’92
Conference, ACM Press, pp. 335-342.
[Krakowiak 90] S. Krakowiak, M. Meysembourg, H.
Nguyen Van, M. Riveill, C. Roisin. Design and
Implementation of an object-oriented strongly typed
language for distributed applications, Journal of Object-
Oriented Programming, September 1990.
[Mantei 91] M. M. Mantei, R. M. Baecker, A. J.
Sellen, W. A. S. Buxton, T. Milligan. Experiences in the
Use of a Media Space, in Proceedings of the SIGCHI’91
Conference, ACM Press, pp. 203-208.
[Nigay 91] L. Nigay and J. Coutaz. Building User
Interfaces: Organizing Software Agents, in Proceedings
of the Esprit’91 Conference, Brussels, November 1991,
pp. 707-719.
[Nigay 94] L. Nigay, Ph.D Dissertation, University
Joseph Fourier, Grenoble, 1994.
[Simon 84] H.A. Simon, The Science of the
Artificial, The MIT Press, third edition, 1984.
[UIMS 92] The UIMS Workshop Tool Developers:
A Metamodel for the Runtime Architecture of an
Interactive System, in SIGCHI Bulletin, 24, 1, January
92, pp. 32-37.

6

6. SLIDE FOR PRESENTATION AT THE WORKSHOP

