
ERCIM’95 workshop on Multimedia Multimodal User Interfaces, Crete , 1995

Multimodality from the User and System Perspectives

Joëlle Coutaz, Laurence Nigay, Daniel Salber
CLIPS-IMAG, BP 53, 38041 Grenoble cedex

email: {Joelle.Coutaz, Laurence.Nigay, Daniel.Salber}@imag.fr

Abstract. This article is concerned with the usability and implementation of multimodal user interfaces. We
show how the usability of such systems can be characterized in terms of the relations they are able to maintain
between the modalities they support. Equivalence, assignment, redundancy, and complementarity of modalities
form an interesting set of relations relevant to usability assessment and software design. We use the notion of
compatibility between user preferences and system properties to show how the CARE properties interact with
user modelling to predict usability during the design of a system. In addition we demonstrate how experimental
evaluations can be based on the CARE properties. We then depart from the HCI perspective to consider the
implications of such properties on software design and techniques: we present PAC-Amodeus, a software
architecture model, in conjunction with a generic fusion mechanism.

Keywords: Multimodal user interfaces, properties, usability, software architecture, software
design, CARE properties, PAC-Amodeus.

1. Introduction

The combined use of multiple interaction techniques such as speech and gesture opens a new
world of experience. Although the potential for innovation is high, the current understanding
about how to design, build, and evaluate multimodal user interfaces is still primitive.

Within the ESPRIT Basic Research Amodeus project, we have developed scientific tools that
help designers and implementers to reason about multimodality from both the system and the
user's perspectives. For example, the MSM framework makes explicit the notion of multiple
grains of parallelism as well as the fusion and fission of information at various levels of
abstraction [Coutaz 93]. Parallelism and fusion are not novel aspects of interaction but the
complexity engendered by multimodality makes these phenomena first class issues. In
particular, they convey new properties that can be used to characterize multimodal user
interfaces.

In this article, we propose the CARE properties as a simple framework for reasoning about
multimodal interaction from both the user and the system perspectives: the Complementarity,
Assignment, Redundancy, and Equivalence that may occur between the interaction techniques
available in a multimodal user interface. The TYCOON framework offers another approach to
the analysis of multimodal systems [Martin 95]. In TYCOON, a modality is modelled as a
computational process similar to the interactor-based modelling technique developed in
Amodeus [Paterno 94, Duke 94]. Multimodality is discussed in terms of various types of
composition between modality processes. Although TYCOON is a useful computational model
for reasoning about software design, it is not primarily driven by end-user concerns.

Figure 1 summarizes our scientific approach. The CARE properties whose formal definition is
provided in Section 2, serve as a common framework for reasoning about the usage and
usability of multimodal interaction techniques as well as for designing software. The user-
centered CARE properties are discussed in Section 4 along two complementary perspectives:
the predictive theory-based approach and the experimental observation of the user. The

2

implications of the CARE properties on system design are presented in section 5. The
discussion will be illustrated with MATIS [Nigay 94], a multimodal interactive system
developed in collaboration with colleagues at Carnegie Mellon University. The main features of
MATIS are presented in the following section.

CARE properties
Section 3

Predictive approach
User-CARE

Section 4

Experimental approach
Wizard of oz

Section 4

Usability testing
User-CARE

Software design
System-CARE

Section 5

Figure 1: The CARE properties as a framework for reasoning about multimodality in software design and
usability testing.

2. The case example: MATIS

MATIS (Multimodal Airline Travel Information System) allows a user to retrieve information
about flight schedules using speech, direct manipulation, keyboard and mouse, or a
combination of these techniques [Nigay 94]. Speech input is processed by Sphinx, a
continuous speaker independent recognition engine developed at Carnegie Mellon University
[Lunati 91]. MATIS supports both individual and synergistic use of multiple input modalities
[Nigay 94]. For example, using one single modality, the user can say “show me the USAir
flights from Boston to Denver” or can fill in a form using the keyboard. When exploiting
synergy, the user can also combine speech and gesture as in “show me the USAir flights from
Boston to this city” along with the selection of "Denver" with the mouse. MATIS does not
impose any dominant modality: all of the modalities have the same power of expression for
specifying a request and the user can freely switch between them.

Figure 2: A snapshot from the MATIS application.

In addition, the system is also able to support multithreading: a MATIS user can disengage
from a partially formulated request, start a new one, and later in the interaction process, return
to the pending request. Figure 2 illustrates this facility: two requests (bottom left of the screen)
are currently being formulated. To make an old request active, the user has to select the

3

corresponding window. The request will come to the front and will constitute the new current
context of interaction.

Although our earlier studies focused on input user interfaces such as the MATIS system, we
wish to demonstrate the relevance of our results to the design of multimodal output interfaces.
The CARE properties that we describe in the following section embeds input as well as output
interfaces.

3. The CARE properties

3.1. Concepts
The formal expression of the CARE properties relies on the notions of state, goal, modality,
and temporal relationships.
 • A state is a vector of observables, that is, a set of properties that can be measured at a

particular time to characterise a situation.
• A goal is a state that an agent intends to reach.
• A sequence of successive steps (or states) is called an interaction trajectory.
• An agent, e.g., a user, or the system, or a component of the system, is an entity capable of

initiating the performance of actions.
• A modality is an interaction method that an agent can use to reach a goal. To model the

expressive power of a modality m, that is, its capacity to allow an agent to reach state s'
from state s in one step, we use the function Reach(s, m, s').

This generic definition of a modality can be interpreted at different levels of refinement. For
example, a modality could be specified in general terms as ‘using speech’, or more specifically
as ‘using a microphone’. Both of these interpretations are valid.

A temporal relationship characterises the use over time of a set of modalities. The use of these
modalities may occur simultaneously or in sequence within a temporal window, that is, a time
interval. Alternatively, only one modality from a set may be used. Let Pick(s, m, s') be a
predicate that expresses the use of m among a set of modalities to reach s' from s.

Modalities of a set M are used simultaneously (or in parallel) if, within a temporal window,
they happen to be active at the same time. Let Active (m, t) be a predicate to express that
modality m is being used at some instant t.

The simultaneous use of modalities of a set M over a finite temporal window tw can be
formally defined as:

Parallel (M, tw) ⇔ (Card (M) > 1) ∧ (Duration(tw) ≠ ∞) ∧ (∃t∈tw · ∀m∈M · Active (m, t))
where Card (M) is the number of modalities in set M, and Duration(tw) is the duration of the
time interval tw.

Sequential events may have to occur within a temporal window to be interpreted as temporally
related. If they occur outside this window, then they may be interpreted differently. Modalities
M are used sequentially within a temporal window tw if there is at most one modality active at a
time, and if all of the modalities in the set are used within tw:

Sequential (M, tw) ⇔ (Card (M) >1) ∧ (Duration (tw)≠∞) ∧ (∀t∈tw · (∀m, m'∈M ·

Active(m, t) ⇒ ¬Active(m', t)) ∧ (∀m∈M · ∃t∈tw · Active(m, t))

Temporal windows for parallelism and sequentiality need not have identical durations. The
important point is that they both express a constraint on the pace of the interaction. For
example, using multiple modalities simultaneously may be appropriate for the user but may
require extra processing resources from the system side or imply a specific software
architecture as shown in the following section. The absence of temporal constraints is treated
by considering the duration of the temporal window as infinite.

4

Figure 3 shows the relationships between the concepts used in CARE: an agent having reached
state s, may have (or has) the goal g to reach state s' by means of the non-empty set of
modalities M={m1, m2 ... mn}. These modalities are linked by temporal relationship TR
(TR::=||⏐;⏐1, for parallelism, sequentiality, and selection of one interaction technique

respectively), and constrained by a temporal window TW (TW::=<interval>⏐∞). The symbol

T at the upper left denotes the CARE property (T::=C⏐A⏐R⏐E).

m1
m2
...

mn

TR

s s'TW

T

g

Figure 3: A notation for expressing CARE properties.

The CARE properties, which characterise four types of relationships between states and
modalities, can be defined and illustrated with MATIS [Nigay 94]. Our discussion will
concentrate on input (i.e., from the user to the system) although the definitions hold for output
as well.

3.2. CARE properties: Formal Definition
Equivalence: Modalities of set M are equivalent for reaching s' from s, if it is necessary and
sufficient to use any one of the modalities. M is assumed to contain at least two modalities.
More formally:

Equivalence (s, M, s') ⇔ (Card(M) >1) ∧ (∀m ∈ M Reach (s, m, s'))

Equivalence expresses the availability of choice between multiple modalities but does not
impose any form of temporal constraint on them. Figure 4 shows an example of equivalence
between several modalities for specifying “Pittsburgh” as the destination of a trip. Users have a
choice of speaking or typing the sentence “Flights to Pittsburgh”, or keying “Pittsburgh” in the
destination slot of the request form. Alternatively, they may interact with the Tool window and
pick up “Pittsburgh” as a destination from the menu of known cities.

Assignment: Modality m is assigned in state s to reach s', if no other modality is used to
reach s' from s. In contrast to equivalence, assignment expresses the absence of choice: either
there is no choice at all to get from one state to another, or there is a choice but the agent always
opts for the same modality to get between these two states. Thus we can define two types of
assignment:

StrictAssignment (s, m, s') ⇔ Reach (s, m, s') ∧ (∀ m'∈ M. Reach(s, m',s') ⇒ m'=m)

AgentAssignment (s, m, M, s') ⇔
(Card(M) >1) ∧ (∀m' ∈ M. (Reach (s, m', s') ∧ (Pick (s, m', s')) ⇒ m'=m))

In the case of an agent assignment, it is interesting to analyse the interaction trajectories to
explain and justify its occurrence. In MATIS, window management is performed by direct
manipulation only. In particular, speech cannot be used as an alternative. Therefore, the system
imposes a strict assignment upon the user for window based tasks. Conversely, a user who
always uses speech to specify trip destinations would turn the Equivalence offered by the
system into an Agent Assignment. This issue will be developed further in Section 4.
Equivalence and assignment both measure the choice available at some point in the interaction
trajectory. Redundancy and complementarity go one step further by considering the combined
use of multiple modalities under temporal constraints.

5

"Flights to Pittsburgh"
"Flights to Pittsburgh" in NL Window
"Pittsburgh" in Destination Slot
"Pittsburgh" in Tool Window

K
K

E

s's
specify destination

1

Figure 4: Examples of equivalence in MATIS. The “lip” symbol denotes speech, K represents the use of the
keyboard, and the mouse symbol, a mouse selection.

Redundancy: Modalities of a set M are used redundantly to reach state s' from state s, if they
have the same expressive power (they are equivalent) and if all of them are used within the
same temporal window, tw. In other words, the agent shows repetitive behaviour without
increasing its expressive power:

Redundancy (s, M, s', tw) ⇔
Equivalence (s, M, s') ∧ (Sequential (M, tw) ∨ Parallel (M, tw))

Redundancy can comprise two distinct temporal relationships – sequentiality and parallelism –
which may have different implications for usability and software implementation. In particular,
parallelism puts restrictions on the types of modalities that can be used simultaneously:
modalities that compete for the same system or human resources cannot be activated in parallel.
The agent can then only act sequentially if it can comply with the temporal constraints (i.e., it
must act quickly for the multiple inputs to be treated as if they were parallel).

For example, the MATIS system is able to support parallel-redundancy between speech acts
and any one of the other equivalent modalities presented in Figure 4. As shown in Figure 5,
redundant typing in the NL window and in the destination slot competes for the same system
and human resources. Therefore these two methods must be used sequentially (unless two
keyboards and two users were available) and within the temporal window tw, which in turn
must be kept within tw'. When the user does not satisfy the temporal constraint, MATIS
creates a new request initiated with the extra “redundant” information. This system decision
may not be in accordance with the user’s expectation or intention.

s's
specify destination

R ||

tw'

;

"Flights to Pittsburgh"

"Pittsburgh" in Tool Window

"Flights to Pittsburgh" in NL Window

"Pittsburgh" in Destination SlotK
KR

tw

Figure 5: Example of redundancy in MATIS.

According to our formal definition, redundancy requires equivalence but equivalence only
stipulates the existence, not the activation, of multiple methods. This asymmetry has
implications for the system’s robustness. Suppose for example that a user is sending the same
content concurrently via the equivalent modalities m and m'. If the system does not support
redundancy for m and m', either it is unable to sense m while sensing m', or it senses both of
them and may get confused. Therefore, software designers must have a clear architectural
model as well as the appropriate software mechanisms to handle these issues appropriately.

Complementarity: Modalities of a set M must be used in a complementary way to reach state
s' from state s within a temporal window, if all of them must be used to reach s' from s, i.e.,
none of them taken individually can cover the target state. To express this adequately, we need

6

to extend the notion of reachability to encompass sets of modalities: REACH(s,M,s') means
that state s' can be reached from state s using the modalities in set M.

Complementarity (s, M, s', tw)
⇔ (Card(M) >1) ∧ (Duration(tw)≠ ∞) ∧ (∀M'∈PM (M'≠M ⇒ ¬REACH (s, M', s'))) ∧
REACH (s, M, s')∧ (Sequential (M, tw) ∨ Parallel (M, tw))

Deictic expressions, characterised by cross-modality references, are examples of
complementarity. As shown in Figure 6, a MATIS user can type or speak the sentence “flights
to this city” (or simply “flights to”) and select a city name on the screen. Here, the sentence
specifies the focus of interest (i.e., the destination of the trip) while the mouse selection
denotes a location. These two modalities complement each other and must be combined to
reach the intended goal. As with redundancy, complementarity may occur in parallel or
sequentially within a temporal window. In contrast to redundancy, which does not favour any
modality, complementarity may be driven by a dominant modality, which requires the use of
others. Typically, in MATIS, deictic references in speech require the use of the mouse to point
to a screen object.

Cross modality references may draw upon both complementarity and redundancy. For
example, a MATIS user may say “flights to this city” while typing “Pittsburgh” in the
destination slot of the request form. In this case, from the system’s perspective, the speech act
denotes the topic of interest while the typing action specifies both the topic and its value. The
speech act, which is covered by the typing act in the destination slot, should be ignored by the
system (i.e., the system should not wait for the resolution of the deictic reference). Again, the
CARE properties have implications for system implementation.

Another source of complexity for software designers is that distinct actions produced within the
same temporal window through different modalities are not necessarily complementary. In this
case, fusion must not be performed. For example, a MATIS user may say “Flights to
Pittsburgh” while selecting an irrelevant object on the screen. In section 5, we describe how
these issues can be supported consistently through a reusable software mechanism.

|| ;

tw

"Flights to"

"Pittsburgh" on screen

"Flights to"K

E

"Flights to this city"

"Flights to this city"K

1
C

Figure 6: Examples of complementarity in MATIS. Complementarity can be parallel or sequential.

Our formal definitions of the CARE properties provide conceptual foundations for reasoning
about multimodal interaction. To put them to work, we need to discuss issues such as coverage
and refinement.

Coverage of a modality. Coverage has to do with the set of states for which a particular
property holds. For example, in MATIS, the situations described in Figures 4 to 6 hold for any
goal related to request specification. Coverage of a property over states can be used as a metric
for assessing consistency. The CARE properties, which include the notions of modality and
goal, can also be instantiated at multiple levels of refinement.

Modality refinement. Modality refinement in terms of devices and interaction languages is
discussed in [Nigay 95]. To summarize,
• a physical device is an artefact of the system that acquires (input device) or delivers (output

device) information. Examples of devices in MATIS include the keyboard, mouse,
microphone and screen.

• An interaction language defines a set of well-formed expressions (i.e., a conventional
assembly of symbols) that convey meaning. The generation of a symbol, or a set of

7

symbols, results from actions on physical devices. In MATIS, examples of interaction
languages include pseudo-natural language and direct manipulation.

We define an interaction technique (or a modality) as the coupling of a physical device d with
an interaction language L: <d, L>.

Considering MATIS,
• speech input is described as the couple <microphone, pseudo natural language NL>, where

NL is defined by a specific grammar,
• written natural language input is defined as <keyboard, pseudo natural language NL> (a

MATIS user can also type in NL sentences in a dedicated windows),
• graphic input is described in terms of <mouse, direct manipulation>, and
• graphic output corresponds to the couple <screen, tables>. (Flight schedules returned by

MATIS are always presented in a tabular format.)

From these definitions, it is then possible to reason at a finer grain of concerns and consider the
Complementarity, Assignation, Redundancy and Equivalence between physical devices as well
as between interaction languages. For example in MATIS, NL sentences can be produced
using either the microphone or the keyboard. The microphone and the keyboard are
functionally equivalent regarding the goal "producing a NL sentence". Thus, in a noisy
environment, the Matis user can easily switch to the keyboard.

Goal refinement. Typically, goals are recursively decomposed into subgoals. In our
modelling technique, this decomposition is expressed as a refinement of interaction trajectories.
Depending on the level of refinement, interaction trajectories can be viewed either as a one step
encapsulation or as a sequence of steps. For example, in Figure 7 the intended goal is to reach
a state where both the departure and the destination of the trip are specified. This goal may be
seen as a single chunk or as an encapsulation of two subgoals: specify departure and specify
destination.

s s'
specify departure&destination

specify departureMethods = as in Fig.2-4

specify destination

Methods = as in Fig.2-4

"Flights from Boston to Pittsburgh"
KE

R
1
||

"Flights from Boston to Pittsburgh"
(a)

(b)

Figure 7: CARE and goal refinement.

The user may use one modality, saying the sentence “Flights from Boston to Pittsburgh”, or
typing it into the speech recognition window, or doing both redundantly (case a). Alternatively,
they could specify the departure using any method described in Figures 4 to 6 and then specify
the destination (case b). In case (a), the user’s actions must be performed within some time
interval and the system provides feedback once the temporal window has elapsed. In (b), the
system provides feedback for each subgoal. Considering the description in Figure 5 at a high
level, methods (a) and (b) are functionally equivalent. At a finer grain of analysis however, (a)
and (b) differ in the interaction trajectory. As such, they may not be perceived as equivalent.

In summary, the CARE properties can be used at multiple levels of goal refinement. Designers
can exploit the recursive nature of CARE to reason about multimodality at the appropriate level.
For example, in the early stage of the life cycle, one may reason at a coarse grain to flesh out
the most salient requirements about multimodality. Once the system is designed, one may need
to go into more details to make sound predictive assessments as shown in the following
section. Once the system is implemented, effective use of the system can be observed and
interaction traces may be analyzed at fairly low level of details.

8

4. CARE and User-CARE properties

The CARE properties of the computer system have a counterpart in corresponding properties of
the user: the CARE-like or User-CARE properties.

4.1. User-CARE properties
The user properties are concerned with the choice between different modalities for
communicating with the computer. As above, our discussion will be confined to the choice of
modality for communication in the input direction, that is, from the user to the system. Because
of the user’s circumstances – including her task, her background, her training, her knowledge,
and the physical and interactive behaviour of the computer interface – the user may well have
preferences as to how she communicates with the computer. A familiar example is that if the
user is engaged in a task which occupies her hands, she may prefer to use speech. We refer to
such preferences by the user, affecting her choice of input modalities, as U-preferences.

Certain patterns of U-preferences are worth identifying. (a) If only one modality is acceptable
to the user, or if she has a strong preference for one particular modality, then we have a case of
U-assignment. (b) If there exists a subset of the possible modalities which she prefers to all
others, but between which she is indifferent, then we have a case of U-equivalence. (c) If the
user prefers to employ two or more means of communication to convey the same information,
then we have a case of U-redundancy. (d) If the user’s preference is to use one modality for
one aspect of the task and another modality for another aspect, then we have a case of
U-complementarity. The crucial requirement on the design of the system is that its properties
must be compatible with the user’s U-preferences. We regard a system design as being
compatible with the user’s needs provided there exists at least one modality which is acceptable
to both system and user.

Compatibility may be assessed using predictive evaluation techniques or using experimental
approaches grounded on users observation. Predictive techniques such as discount usability
testing [Nielsen 89], draw upon a large body of HCI heuristics. Currently, heuristics
frameworks do not cover multimodal interaction properly. Alternatively, predictive evaluation
may be based on a theory of cognition such as GOMS. In this section, we outline an early
work on predictive assessment using the ICS and PUM theory-based modelling techniques
developed within the Amodeus project (section 4.2).

As a complementary means of assessing the usability and usage of multimodality, we have
developed NEIMO, a generic and flexible multiworkstation usability lab, to observe and
analyze multimodal interaction experimentally [Salber 93] (Section 4.3).

4.2. Predictive assessment
In [Coutaz 95] the issue of compatibility is addressed by considering the requirements for each
of the CARE properties to be compatible with each of the U-CARE properties. One approach is
to consider what a user needs to know about a system in order to develop any of the
U-preferences described above.

A technique such as Programmable User Modelling [Blandford 93] can be used to assess the
likelihood that a user will be able to acquire the particular knowledge needed to develop the
appropriate U-preference. Another approach is to consider the cognitive resources a user will
require in order to use or choose between the modalities included in the various U-preference
sets. To do so a general cognitive architecture such as ICS [Barnard 93] can be used. In
[Coutaz 95] we further develop the notion of compatibility between user preferences and
system properties to show how the CARE properties interact with user modelling to predict
usability at the design stage of the software development.

4.3. Experimental assessment: the NEIMO usability lab

9

4.3.1. Principles
As shown in Figure 8, using the NEIMO platform involves a two-step process: the
experimentation session followed by an analysis phase. In phase 1, a subject executes a set of
scenarios on a dedicated workstation. In a different room, human factor experts observe the
subject, make annotations, or simulate the missing functions of the system (e.g., speech
recognition) using their own workstation. Meanwhile, behavioral data about the subject as well
as experimenters' annotations are recorded automatically. NEIMO captures information at
various levels of abstraction from keystroke level such as mouse events and speech acts, to
high level tasks such as sending a fax.

In its current version, the NEIMO platform includes 4 Apple Macintosh Quadras connected by
Ethernet. The user interfaces for the subject and the wizards workstations are prototyped with
HyperCard. Apple Events are used as the standard communication mechanism but a specific
tool has been developed for efficient transmission of video over Ethernet. (Sound is not yet
transferred over the network.) Behavioral data are recorded using the QuickTime format.

In phase 2, behavioral data are used by specialists to assess the usability of the system. In the
context of our research, the motivation is to elicit the usage of modalities according to the
CARE framework.

Subject

Speech
wizard

Annotation
wizard

Task domain
wizardBehavioral

data

Analyst Behavioral
data Workstation

Ethernet link
Legend

Room1 Room 2

Phase 1

Phase 2

Figure 8: Configuration of the NEIMO platform.

Most usability platforms are not computer-supported. NEIMO, which is able to digitally record
behavior at various levels of abstraction, opens the way to the development of automated
analysis tools that alleviate the time-consuming manual analysis of a large body of data such as
repetitive pattern of behavior.

In addition to observation and annotation, NEIMO supports Wizard of Oz experiments. Most
existing Wizard of Oz systems support the observation of one modality only or are limited by
technical constraints. NEIMO has been designed from scratch to support multimodality. A
significant amount of effort has been dedicated to implementation issues to satisfy performance
requirements.

NEIMO is multiworkstation, generic and flexible: 1) It supports any number of wizards; 2) It is
organized around a reusable and extensible kernel of common services onto which specific user
interfaces can be plugged; 3) Workstations are configurable at start up time: wizards roles
(e.g., speech recognition, annotations, etc.) can be freely allocated among the workstations. In
addition, data capture can be set up at the appropriate level of abstraction.

4.3.2. Illustration
Figures 9 and 10 show the screens of the speech-wizard and of the annotator to observe a
subject performing telecommunication tasks (e.g., sending a fax and Vphoning) in a
multimodal interaction setting (i.e., speech and direct manipulation). The speech-wizard
translates multimodal commands such as "Call this person" into actions understandable by the
system. To accomplish this, he can hear the subject talking and a miniature reproduction of the

10

subject's screen allows the speech-wizard to track the user's mouse and keyboard actions. If
the subject makes a linguistic mistake such as uttering a wrong command name, the speech-
wizard sends an error message through a dedicated tool. As shown in Figure 9, error messages
are predefined and organized into categories (lexical&syntactic and domain-dependent errors),
or may be customized on the fly. In the normal case, the speech-wizard simulates the subject's
actions using direct manipulation on the miniature screen.

Figure 9: The screen of the Speech-Wizard. On the top left, a miniature of the subject's screen; on the bottom
left, the CARE window shows the CARE properties that are currently authorized for the tasks of the

experiment; on the right, the error messages tool.

The annotation-wizard who can observe the subject's behaviour through his own workstation
(sound+miniature screen), can record comments describing the subject's hesitations (see
Figure 10). This information, which complements the subject's wrong mouse clicks, will be
pointed out by the analysis tool in the next phase.

Figure 10: The screen of the annotation-wizard. On the top left, the miniature of the subject's screen; on the
right, the form to create annotations. In this example, the problem is concerned with the lexical level of the

interaction, it is related to the telephone task and is not blocking. The annotator can complement the "standard"
attributes with specific comments: here, a problem of affordance with the mirror facility.

In its current form, the analysis tool provides quantitative data such as the duration of scenarios
as well as statistical information through the facilities provided by a spreadsheet program. It

11

does not yet support editing facilities nor the rendering of multimodal usage. It does however
replay the set of scenarios (just like a VCR) and provides browsing facilities such as rewinding
the "VCR to the previous lexical error" (See Figure 11). In addition, the tool shows a PERT
diagram that makes tasks interleaving explicit. The diagram is enhanced with clickable
"bubbles" that reveal the annotations recorded on the fly by the annotation-wizard.

Figure 11: The screen of the analysis tool using the VCR metaphor. In the top left, the replay window that
reproduces the subject's screen. On the top right, VCR buttons to control the navigation. At the bottom, the list
of scenarios and for each scenario, a PERT diagram displayed on a perspective wall [Mackinlay 91] of the tasks
executed during the scenario. A search window is currently opened to position the "VCR" on the next lexical

error.

4.3.3. Perspectives
In the near future, we will conduct full-fledged experiments to study the relevance of
multimodality for telecommunication tasks (preliminary results for drawing tasks show that in
deictic expressions, pointing is often performed first [Catinis 95]). We also need to find the
balance between digital and analog recording in order to conciliate precision, volume of
recorded data, and potentiality for automatic evaluation. Having primarily developed NEIMO
for capturing behavior, we need now to augment our analysis tool with new computation and
visualization facilities.

Having analysed the CARE properties in the light of user-centered concerns, we now discuss
their implications on software design.

5. CARE and System-CARE properties

Our technical solution for supporting the CARE properties draws upon our software
architecture model: PAC-Amodeus [Nigay 93].

5.1. The PAC-Amodeus model
PAC-Amodeus is intended as a guide for developing software architectures at a conceptual
level. It is a blend of the components advocated by the Arch model [UIMS 92] and the PAC
refining process expressed in terms of agents [Coutaz 87]. As shown in figure 12, the
Dialogue Controller of the Arch model is decomposed into a set of cooperative PAC agents.
The refinement of the Dialogue Controller in terms of PAC agents has multiple advantages
including explicit support for concurrency and data fusion. Data fusion occurs within the
Dialogue Controller to build commands at a high level of abstraction. In particular, it is

12

triggered when two modalities are used in a complementary way. A complete description of
PAC-Amodeus can be found in [Nigay 93].

.

Interface with the
Functional Core

Functional Core

Presentation Techniques

Low Level

Device dependentDomain dependent

Dialogue Controller

A

Domain Objects Interaction Objects

Language dependent
Component

InteractionComponent

C P

Fusion engine

Fusion
Conceptual

Objects
Presentation
Objects

Figure 12: The PAC-Amodeus software components and their relationship with data fusion.

The fusion engine uses a uniform representation model to perform fusion: the melting pot. As
shown in Figures 12 and 13, a melting pot is a 2-D structure. On the vertical axis, the
"structural parts" model the structure of the task objects that the Dialogue Controller is able to
handle. Events generated by user's actions are abstracted and mapped onto these structural
parts. The Low Level Interaction and Presentation Techniques components are in charge of this
process. Events are time-stamped: a mapped event defines a new column on the horizontal
temporal axis. The structural decomposition of a melting pot is described in a declarative way
outside the fusion engine. As a result, the fusion mechanism is domain independent: structures
that rely on the domain are not “code-wired”. They are used as parameters for the fusion
engine.

Using MATIS as an illustration, Figure 13 shows how redundancy and complementarity are
handled by the fusion mechanism. In the redundancy example, the user has uttered the sentence
“Flights to Boston” while selecting “Boston” with the mouse in the menu of known cities. The
speech act is translated into the bottom left melting pot: at time ti, the slot “to” is filled in with
the value “Boston”. The melting pot next on the right results from the mouse selection. The
fusion engine combines these two melting pots into a new one (top left). A similar reasoning
applies to complementarity.

Time

Structural
parts

Time

Structural
parts

Time

Structural parts

Bos Bos

ti ti

Bos

Time

Structural
parts

Time

Structural
parts

Time

Structural parts

Bos

ti ti+1

Bos

Pit

Pit

Complementarity
<Uttered sentence "Flights from Pittsburgh to this city"

while selecting Boston>

Redundancy
<Uttered sentence "Flights from Boston"�

while selecting Boston>

Figure 13: The effect of redundancy and complementarity on the fusion mechanism.

5.2. The fusion mechanism
As demonstrated above, our fusion mechanism is a reusable domain independent algorithm.
This algorithm adopts an “eager” strategy: it always makes attempts to combine input data. This

13

approach has the advantage of providing the user with immediate feedback before the
functional core is accessed. The drawback is the possible occurrence of incorrect fusions which
must be undone. Incorrect fusion occurs due to the different time scales required to process
data specified through different modalities. As a result, the sequence of melting pots is not
necessarily identical to the user's actions sequence. For example, in MATIS melting pots that
correspond to direct manipulation expressions are built faster than those from voiced
utterances. We will show how our engine deal with undesirable fusions.

The criteria for triggering fusion are threefold: the logical structure of commands, time, and
context. When triggered, the engine applies three types of fusions in the following order:
microfusion, macrofusion, and contextual fusion.

• Microfusion is performed when input data is structurally complementary and very close
over time: i.e., microfusion combines inputs if they have been produced in parallel or in
pseudo-parallelism. (Intersection of time intervals.)

• Macrofusion is performed according to the same criteria as microfusion but combines
data that belong to a given temporal window. (Temporal proximity.) Macrofusion implies
proximity of time intervals as opposed to microfusion which implies the intersection of
time intervals.

• Contextual fusion is performed according to the structure of the data to be combined and
the current context. For example in MATIS, the context corresponds to the current
request. Contextual fusion combines new input data with the current request if their
respective structures are compatible.

Having presented the driving principles of the fusion mechanism, we now focus on the
technical details. Our fusion algorithm has been implemented in C and embedded in a PAC-
Amodeus architecture for MATIS. We first introduce the metrics associated with each melting
pot. We then explain how microfusion is implemented and show how the fusion mechanism
supports redundancy and complementarity. Finally, we present the management of the set of
melting pots and the exchanges of melting pots within the hierarchy of PAC agents.

5.2.1. Metrics for a melting pot
Figure 14 portrays the metrics that describe a melting pot mi:
mi = (p1, p2,... , pj,..., pn): mi is comprised of n structures p1, p2, ...pn.
infoij: piece of information stored in the structural part pj of mi.
Tinfoij: time-stamp of infoij.
Tmaxi: time-stamp of the most recent piece of information stored in mi.
Tmini: time-stamp of the oldest piece of information stored in mi.
Temp_wini: duration of the temporal window for mi.

∆t: Remaining life span for mi.

A melting pot encapsulates a set of structural parts p1, p2,...pn. The content of a structural part
is a piece of information that is time-stamped. Time stamps are defined by the LLIC when
processing user's events. The system computes the boundaries (Tmax and Tmin) of a melting
pot from the time stamps of its informational units :
So, for mi = (p1, p2,... , pj,..., pn), Tmaxi = Max(Tinfoij) and Tmini = Min(Tinfoij)

The temporal window of a melting pot defines the temporal proximity (+/- ∆t) of two adjacent

melting pots: When ∆t reaches a threshold (i.e., a pre-specified critical value), the engine
undertakes a macrofusion. Temporal windows are used to trigger macrotemporal fusion.
So, for mi = (p1, p2,... , pj,..., pn), Temp_wini = [Tmini-∆t, Tmaxi+∆t]
The last metrics used to manage a melting pot is the notion of life span, Expi:

Expi = Tmaxi + ∆t = Max(Tinfoij) + ∆t. This notion is useful to remove a melting pot from the
set of candidates for fusion.

14

Info

Info

Structure p4

Structure p2

Structure p3

Structure p1

Structural parts

Timet
= Tmin

t+1 t+3 t+4

Temp_win: Temporal window

Exp: Life span

Info

t+5
= Tmax

∆t

i

i

i

i

Info

∆t

i2

i3

i4

i1

t+2

Figure 14: Metrics used to define melting pot mi.

5.2.2. The mechanism
The fusion mechanism is driven by a set of rules.

Rule 1 deals with microfusion. Because the strategy is “eager”, microfusion is first attempted
and triggered on the arrival of a new melting pot. Since it models a user’s action at instant t',
this melting pot is composed of one column only. Rule 1 makes it explicit the occurrence of
microfusion: if the content of the new melting pot (coli't') is complementary with a column
(colit) of an existing melting pot (mi) and if the time-stamps of this column is close enough to t'
(i.e., within ∆microt), then microfusion is performed.
Rule 1 Microfusion
Given:

• colit = (p1, p2,... , pj,..., pn): one column at time t of an existing
melting pot mi.
• coli't’ = (p'1, p'2, ..., p'j, ..., p'n): a one column melting pot mi' produced at time t'
• i ≠ i'
colit and coli't’ are combined if:
• they are complementary: Complementary (colit , coli't’) is satisfied if:

∀k ∈ [1..n] : ∃ infoik Λ ¬ (∃ infoi'k)
• their time stamps are temporaly close in the following way:
Close (colit, coli't') is satisfied if: t' ∈ [t-∆microt, t+∆microt]

Microfusion may involve undoing a previous fusion. This exception case is illustrated in
Figure 15 that shows the fusions performed in the context of the following example: the user
has already specified the destination slot (i.e., Denver) as well as the departure slot (i.e.,
Boston) of the current request. The result of this specification is modelled in Figure 15 as the
melting pot m1. The user then utters the sentence "Flights from Pittsburgh" while selecting
"TWA" using the mouse. Because mouse clicks are processed faster than speech input, the
mouse selection is first received by the Dialogue Controller. The mouse click is modelled as the
melting pot m2 which contains [TWA]. The new coming melting pot m2 is combined with m1
by contextual fusion. The result of this contextual fusion is represented in Figure 15 as m1'
which contains [BOS, DEN, TWA]. Meanwhile, melting pot m3 which corresponds to the
sentence "Flights from Pittsburgh", is received by the Dialogue Controller. The current set of
candidates for fusion is now {m1, m2, m3}. Because the time intervals of m2 [TWA] and m3
[PIT] overlap, they are combined by microtemporal fusion and m2 becomes [PIT, TWA] (rule
1 applies). The previous contextual fusion [BOS, DEN, TWA] is undone. This gives birth to
two melting pots and from now on, the user has elaborated two requests.

15

t+8t t+1 t+9...

...

...

...

New melting pot m3

t+8 t+9

Melting pot m1'

BOS PIT

TWA

DEN

t t+1

BOS
DEN

PIT

TWA

t+9

New melting pot m2

TWA
t t+1

BOS

DEN

Melting pot m1

Melting pot m2'Melting pot m1
t+2t t+1

t+2t
∆microt ∆microt

Melting pot m1 Melting pot m2

TWA TWA

PIT

(a) (b)
Figure 15: Interacting with MATIS:
(a) undoing fusion due to microtemporal fusion. (b) an example of redundancy.

Before applying the rule on Microfusion, the mechanism checks for redundancy using Rule 2.
Redundancy is defined as two close columns that contains the same information. Figure 15
gives an example of redundancy.
Rule 2 Redundancy
Given:

• colit = (p1, p2,... , pj,..., pn): one column at time t of an existing melting mi
• coli't’ = (p'1, p'2, ..., p'j, ..., p'n): one column at time t' of a new melting
 pot mi'
• i ≠ i'
colit and coli't’ are redundant if:
• they contain the same information in the same slots:
Redundant (colit, coli't') is satisfied if: ∀k∈ [1..n] :

∃ infoik Λ ∃ infoi'k Λ infoik = infoi'k
Λ ∀k’∈ [1..n] : ¬ (∃ infoik’) Λ ¬ (∃ infoi'k’)
• their time stamps are temporaly close: Close (colit, coli't') is satisfied if:

t' ∈ [t-∆microt, t+∆microt]

Macrofusion is driven by rules similar to those used for microfusion where ∆microt is replaced
by temporal windows. Whereas time has a primary role in micro- and macro- fusions, it is not
involved in contextual fusion as illustrated in Figure 15. As described above, contextual fusion
is the last step in the fusion process. The driving element for contextual fusion is the notion of
context. In MATIS, contexts are in a one-to-one correspondence with requests. There is one
context per request under specification and the current request denotes the current context. (The
user may elaborate multiple requests in an interleaved way.) When a melting pot is complete
(all of its informational units have been received), and its life span expectancy Expi expires, it
is removed from the set of candidates for fusion. A melting pot removed from the fusion pool
is sent to a PAC agent of the Dialogue Controller for further processing. Rule 3 expresses these
conditions formally. Expi is used for making sure that incorrect fusions have not been
performed: when a melting pot is complete, the engine keeps it for a while in the pool of
candidates in case the next new melting pots trigger "undo" fusions.

16

Rule 3 Conditions to remove a melting pot from the list of candidates for
fusion:

Melting pot mi = (p1, p2, ..., pj, ..., pn) is removed if:

• mi is complete: ∀pj ∈ mi, ∃ infoij
• and its span life is over: current date = Expi

We have shown the generic nature of the fusion mechanism using the criteria of time and
structural complementarity. Each melting pot processed by the fusion mechanism may have any
number of structures (e.g., lines) that are filled independently. The PAC-Amodeus model
along with the fusion mechanism define a reusable platform for implementing input multimodal
interfaces. Our natural next step is to study systems that support multiple languages and
devices for output. This may lead to the development of a "fission" mechanism as introduced in
MSM [Coutaz 93]. Such a fission mechanism can be based on the melting pot representation:
By considering the example of Figure 13, and by inverting the direction of the arrows, we can
sketch how the fission mechanism can work to support complementarity and redundancy in
output interfaces. Several melting pots are deduced from a single one and each derived melting
pot is made perceivable by the user through different output interaction techniques.

6. Summary

We have formally defined a set of properties, the CARE properties, useful in three
complementary ways. The CARE properties can be exploited:

1) to predictively assess the usability and usage of multimodal user interfaces using theory-
based cognitive models such as PUM and ICS,

2) to structure usability testing experiments as in the NEIMO usability lab,
3) to constrain software architecture modelling of interactive systems.

We have developed a generic and extensible platform, NEIMO, that captures behavior at
various levels of abstraction, and we have designed a software architectural model, PAC-
Amodeus, augmented with a fusion mechanism to support the CARE properties.

Acknowledgements

This work has been supported by project ESPRIT BR 7040 AMODEUS2, by PRC
Communication Homme-Machine, and by CNET France Telecom. Special thanks to Eric
Carraux for the development of NEIMO and to Lionel Villard for the implementation of the
perspective wall within the analysis tool.

References

[Barnard 93]
P.J. Barnard, J. May, Cognitive Modelling for User Requirements, Computers, Communication and
Usability, P. F. Byerley, P. J. Barnard, et J. May (éd.), Elsevier, 1993.

[Blandford 93]
A. Blandford, R. M. Young, Developing Runnable User Models: separating the problem solving techniques
from the domain knowledge, People and Computers VIII, J. Alty, D. Diaper and S. Guest (éd.), Cambridge
University Press, 1993.

[Catinis 95]
Catinis, L & Caelen, J. Analyse du comportement multimodal de l'usager humain dans une tâche de dessin; to
appear in Proc. IHM'95, oct. 1995.

[Coutaz 87]
J. Coutaz, PAC, an Object Oriented Model for Dialog Design, Interact'87 Proceedings, North Holland,
Stuttgart, Sept., 1987, pp. 431-436.

[Coutaz 93]

17

J. Coutaz, L. Nigay, D. Salber, The MSM framework: A Design Space for Multi-Sensori-Motor Systems,
EWHCI’93 Proceedings, East/West Human Computer Interaction, Moscow, August, 1993 (Lecture notes in
Computer Science, Vol. 753, 1993, pp. 231-241).

[Coutaz 95]
J. Coutaz, L. Nigay, D. Salber, A. Blandford, J. May, R. Young, Four Easy Pieces for Assessing the
Usability of Multimodal Interaction: The CARE Properties, INTERACT'95 Proceedings, 1995, pp. 115-120.

[Duke 94]
D. Duke, M. Harrison, "Folding Human Factors into Rigourous Development", in the Proc. of Eurographics
Workshop "Design, Specification, Verification of Interactive Systems", F. Paterno' Ed., 1994, pp. 335-352.

[Lunati 91]
J-M Lunati, A. Rudnicky, Spoken Language interfaces: The OM system, CHI'91 Proceedings, ACM Press,
New Orleans, April 27-May 2, 1991, pp. 453-454.

[Mackinlay 91]
J. Mackinlay, G. Robertson, S. Card. The Perspective Wall: Detail and Context smoothly integrated, In Proc.
CHI'91, ACM, 1991, pp. 173-179.

[Martin 95]
J.-C. Martin, Coopératrions entre modalités et liage par synchronie dans les interfaces multimodales, PhD
dissertation, TELECOM, Paris.

[Nielsen 89]
J. Nielsen, “Usability Engineering at a Discount”, in Designing and Using Human Computer Interfaces and
Knowledge-Based Systems, Salvendy & Smith Eds., Elsevier North Holland, 1989, pp. 394-401.

[Nigay 93]
L. Nigay, J. Coutaz, A design space for multimodal interfaces: concurrent processing and data fusion,
INTERCHI’93 Proceedings, ACM Press, Amsterdam, May, 1993, pp. 172-178.

[Nigay 94]
L. Nigay, Conception et modélisation logicielles des systèmes interactifs : application aux interfaces
multimodales, PhD dissertation, Grenoble University, 1994, 315 pages.

[Nigay 95]
L. Nigay, J. Coutaz, A Generic Platform for Addressing the Multimodal Challenge. CHI'95 Proceedings,
ACM Press, Denver, May, 1995, pp. 98-105.

[Paterno 94]
F. Paterno', A. Leonardi, S. Pangoli, "A Tool Supported Approach to the Refinement of Interactive
Systems", in the Proc. of Eurographics Workshop "Design, Specification, Verification of Interactive
Systems", F. Paterno' Ed., 1994, pp. 85-96.

[Salber 93]
D. Salber, J. Coutaz, Applying the Wizard of Oz Technique to the Study of Multimodal Systems, EWHCI’93
Proceedings, East/West Human Computer Interaction, Moscow, August, 1993 (Lecture notes in Computer
Science, Vol. 753, 1993, pp. 219-230).

[UIMS 92]
The UIMS Tool Developers Workshop, A Metamodel for the Runtime Architecture of an Interactive System,
SIGCHI Bulletin, 24, 1, Jan., 1992, pp. 32-37.

