
An Architecture To Support Context-Aware Applications

Anind K. Dey, Daniel Salber, Gregory D. Abowd
GVU Center, College of Computing

Georgia Institute of Technology
801 Atlantic Drive

Atlanta, GA, 30332-0280, USA
Tel: 1-404-894-5103

E-mail: anind, salber, abowd@cc.gatech.edu

Masayasu Futakawa
Hitachi Research Laboratory

7-1-1 Omika-cho
Hitachi-shi, Ibaraki-ken, 319-1221, Japan

Tel: 81-294-52-5111
E-mail: futakawa@hrl.hitachi.co.jp

ABSTRACT
Context is an important, yet poorly utilized source of
information in interactive computing. It is difficult to use
because, unlike other forms of user input, there is no
common, reusable way to handle context. Most context-
aware applications have been built in an ad hoc manner.
We discuss the requirements for dealing with context and
present an architectural solution we have designed and
implemented to help application designers build context-
aware applications more easily. We illustrate the use of the
architecture through a context-aware application that assists
conference attendees.

KEYWORDS: Context-aware computing, architecture,
ubiquitous computing, toolkits, application development

MOTIVATION
In human-human interaction, a great deal of information is
conveyed without explicit communication. Gestures, facial
expressions, relationship to other people and objects in the
vicinity, and shared histories are all used as cues to assist in
understanding the explicit communication. These shared
cues, or context, help to facilitate grounding between
participants in an interaction [4]. We define context to be
any information that can be used to characterize the
situation of an entity, where an entity can be a person,
place, or physical or computational object.

In human-computer interaction, there is very little shared
context between the human and the computer. Context in
human-computer interaction includes any relevant
information about the entities in the interaction between the
user and computer, including the user and computer
themselves. Humans naturally provide context in the form
of signs of frustration or confusion, for example, but
computers cannot sense or use it. We define applications
that use context to provide task-relevant information and/or
services to a user to be context-aware. For example, a
context-aware tour guide may use the user’s location and
interests to display relevant information to the user.

The increased availability of commercial, off-the-shelf
sensing technologies is making it more viable to sense
context in a variety of environments. The prevalence of
powerful, networked computers makes it possible to use
these technologies and distribute the context to multiple
applications, in a somewhat ubiquitous fashion. So what
has hindered applications from making greater use of
context and from being context-aware?

A major problem has been the lack of uniform support for
building and executing these types of applications. Most
context-aware applications have been built in an ad hoc
manner, heavily influenced by the underlying technology
used to acquire the context. This results in a lack of
generality, requiring each new application to be built from
the ground up. To enable designers to easily build context-
aware applications, there needs to be architectural support
that provides the general mechanisms required by context.

This paper describes an architecture to support context-
aware applications. We provide a discussion of how context
has been handled in previous work and why we would like
to handle it as a generalized form of user input. In earlier
work [15], we presented the concept of context widgets,
which allow us to handle context in a manner analogous to
user input. This paper discusses the architectural support
necessary for using context widgets. We derive the
requirements for the architecture by examining the
differences between the uses of context and input. Next, we
present our architectural solution for supporting the design
and execution of context-aware applications. We
demonstrate the use of the architecture through an example
application, the Conference Assistant. Finally, we discuss
the benefits and limitations of the architecture, based on our
experiences in building context-aware applications.

DISCUSSION OF CONTEXT HANDLING
We have demonstrated the importance of context in
interactive computing. The reason why context is not used
more often is that there is no common way to acquire and
handle context. In this section, we discuss how context has
previously been acquired and discuss some concepts that
will allow us to handle context in the same manner as we
handle user input.

Submitted for review to UIST’99
Reviewers: please watch the accompanying
video and for better screenshots, visit
http://www.cc.gatech.edu/fce
/contexttoolkit/uist

Current Context Handling
In general, context is handled in an improvised fashion.
Application developers choose whichever technique is
easiest to implement, at the expense of generality and reuse.
We will now look at two common ways in which context
has been handled: connecting sensor drivers directly into
applications and using servers to hide sensor details.

With some applications [7,14], the drivers for sensors used
to detect context are directly hardwired into the applications
themselves. In this situation, application designers are
forced to write code that deals with the sensor details, using
whatever protocol the sensors dictate. There are two
problems with this technique. The first problem is that it
makes the task of building a context-aware application very
burdensome, by requiring application builders to deal with
the potentially complex acquisition of context. The second
problem with this technique is that it does not support good
software engineering practices. The technique does not
enforce separation of concerns between application
semantics and the low-level details of context acquisition
from individual sensors. This leads to a loss of generality,
making the sensors difficult to reuse in other applications
and difficult to use simultaneously in multiple applications.

The original Active Badge research took a slightly different
approach [19]. In this work, a server was designed to poll
the Active Badge sensor network and maintain current
location information. Servers like this abstract the details of
the sensors from the application. Applications that use these
servers simply poll the servers for the context information
that they collect. This technique addresses both of the
problems outlined in the previous technique. It relieves
application developers from the burden of dealing with the
individual sensor details. The use of servers separates the
application semantics from the low-level sensor details,
making it easier for application designers to build context-
aware applications and allowing multiple applications to
use a single server.

However, this technique has two additional problems. First,
applications that use these servers must be proactive,
requesting context information when needed via a polling
mechanism. The onus is on the application to determine
when there are changes to the context and when those
changes are interesting. The second problem is that these
servers are developed independently, for each sensor or
sensor type. Each server maintains a different interface for
an application to interact with. This requires the application
to deal with each server in a different way, much like
dealing with different sensors. This may affect an
application’s ability to separate application semantics from
context acquisition.

Current Input Handling
Ideally, we would like to handle context in the same
manner as we handle user input. User interface toolkits
support application designers in handling input. They
provide an important abstraction to enable designers to use
input without worrying about how the input was collected.

This abstraction is called a widget, or an interactor. The
widget abstraction provides many benefits. The widget
abstraction has been used not only in standard keyboard
and mouse computing, but also with pen and speech input
[1], and with the unconventional input devices used in
virtual reality [11]. It facilitates the separation of
application semantics from low-level input handling details.
For example, an application does not have to be modified if
a pen is used for pointing rather than a mouse. It supports
reuse by allowing multiple applications to create their own
instances of a widget. It contains not only a polling
mechanism but also possesses a notification, or callback,
mechanism to allow applications to obtain input
information as it occurs. Finally, in a given toolkit, all the
widgets have a common external interface. This means that
an application can treat all widgets in a similar fashion, not
having to deal with differences between individual widgets.

Analogy of Input Handling to Context Handling
There have been previous systems which handle context in
the same way that we handle input [2, 16]. These attempts
used servers that support both a polling mechanism and a
notification mechanism. The notification mechanism
relieves an application from having to poll a server to
determine when interesting changes occur. However, this
previous work has suffered from the design of specialized
servers, that result in the lack of a common interface across
servers [2], forcing applications to deal with each server in
a distinct way. This results in a minimal range of server
types being used (e.g. only location [16]).

Previously, we demonstrated the application of the widget
abstraction to context handling [15]. We showed that
context widgets provided the same benefits as GUI widgets:
separation of concerns, reuse, easy access to context data
through polling and notification mechanisms and a
common interface. Context widgets encapsulate a single
piece of context and abstract away the details of how the
context is sensed. We demonstrated their utility and value
through some example applications.

The use of the widget abstraction is clearly a positive step
towards facilitating the use of context in applications.
However, there are differences in how context and user
input are gathered and used, requiring a new architecture to
support the context widget construct. The remainder of this
paper will describe the requirements for this architecture
and will describe our architectural solution.

ARCHITECTURE REQUIREMENTS
Applying input handling techniques to context is necessary
to help application designers build context-aware
applications more easily. But, it is not sufficient. This is
due to the difference in characteristics between context and
user input. The important differences are:

• the source of user input is a single machine, but context
can come from many, distributed machines

• user input and context both require abstractions to
separate the details of the sensing mechanisms, but

context requires additional abstractions because it is often
not in the form required by an application

• widgets that obtain user input belong to the application
that instantiated them, but widgets that obtain context are
independent from the applications that use them

While there are some applications that use user input that
have similar characteristics to context, (groupware [12] and
virtual environments [5] deal with distributed input and
user modeling techniques [8] abstract input, for example),
they are not the norm. Because of the differences between
input and context, unique architectural support is required
for handling context and context widgets. We will now
derive the requirements for this architecture.

Distribution of context sensing network
Traditional user input comes from the keyboard and mouse.
These devices are connected directly to the computer they
are being used with. When dealing with context, the
devices used to sense context most likely are not attached to
the same computer running the application. For example, an
indoor infrared positioning system may consist of many
infrared emitters and detectors in a building. The sensors
must be physically distributed and cannot all be directly
connected to a single machine. In addition, multiple
applications may require use of that location information
and these applications may run on multiple computing
devices. As environments and computers are becoming
more instrumented, more context can be sensed, but this
context will be coming from multiple, distributed machines.
Support for the distribution of context is our first high-level
requirement.

The need for distribution has a clear implication on
architecture design stemming from the heterogeneity of
computing platforms and programming languages that
could be used to both collect and use context. Unlike with
user input widgets, the programming languages used by the
application to communicate with context widgets and used
by the context widgets themselves, may not be the same.
The architecture must support interoperability of context
widgets and applications on heterogeneous platforms.

Abstraction: Interpretation and Aggregation
There is a need to extend the existing notification and
polling mechanisms to allow applications to retrieve
context from distributed computers in the same way that
they retrieve input from local widgets. There may be
multiple layers that context data goes through before it
reaches an application, due to the need for additional
abstraction. For example, an application wants to be
notified when meetings occur. At the lowest level, location
information is interpreted to determine where various users
are and identity information is used to check co-location. At
the next level, this information is combined with sound
level information to determine if a meeting is taking place.
From an application designer’s perspective, the use of these
multiple layers must be transparent.

In order to support this transparency, context must often be

interpreted before it can be used by an application. An
application may not be interested in the low-level
information, and may only want to know when a meeting
starts. In order for the interpretation to be reusable by
multiple applications, it needs to be provided by the
architecture.

To facilitate the building of context-aware applications, our
architecture must support the aggregation of context about
entities in the environment. Our definition of context given
earlier describes the need to collect context information
about the relevant entities (people, places, and objects) in
the environment. With only the context widget abstraction,
an application must communicate with several different
context widgets in order to collect the necessary context
about an interesting entity. This has negative impacts on
both maintainability and efficiency. Aggregation is an
abstraction that allows an application to only communicate
with one component for each entity that it is interested in.

Component Persistence and History
With most GUI applications, widgets are instantiated,
controlled and used by only a single application. In
contrast, our context-aware applications do not instantiate
individual context widgets, but must be able to access
existing ones, when they require. This leads to a
requirement that context widgets must be executing
independently from the applications that use them. This
eases the programming burden on the application designer
by not requiring her to maintain the context widgets, while
allowing her to easily communicate with them. Because
context widgets run independently of applications, there is
a need for them to be persistent, available all the time. It is
not known a priori when applications will require certain
context information, consequently, context widgets must be
running perpetually to allow applications to contact them
when needed. Take the call-forwarding example from the
Active Badge research [19]. When a phone call was
received, an application tried to forward the call to the
phone nearest the intended recipient. The application could
not locate the user if the Badge server was not active.

A final requirement linked to the need for execution
persistence is the desire to maintain historical information.
User input widgets maintain little, if any, historical
information. For example, a file selection dialog box keeps
track of only the most recent files that have been selected
and allows a user to select those easily. In general though,
if a more complete history is required, it is left up to the
application to implement it. In comparison, a context
widget must maintain a history of all the context it obtains.
A context widget may collect context when no applications
are interested in that particular context information.
Therefore, there are no applications available to store that
context. However, there may be an application in the future
that requires the history of that context. For example, an
application may need the location history for a user, in
order to predict his future location. For this reason, context
widgets must store their context.

Requirements Summary
We have presented requirements for an architecture that
supports context-aware applications. To summarize, these
requirements are:

• allow applications to access context information from
distributed machines in the same way they access user
input information from the local machine

• support execution on different platforms and the use of
different programming languages

• support for the interpretation of context information
• support for the aggregation of context information
• support independence and persistence of context widgets
• support the storing of context history
In the next section, we describe the architecture that we
have built to address these requirements.

DESCRIPTION OF ARCHITECTURE
Our architecture was designed to address the requirements
from the previous section. We used an object-oriented
approach in designing the architecture. The architecture
consists of three main types of objects:

• Widget, implements the widget abstraction
• Server, responsible for aggregation of context
• Interpreter, responsible for interpretation of context

Figure 1. Relationship between applications and the
context architecture. Arrows indicate data flow.

Figure 1 shows the relationship between the objects and an
application. Each of these objects is autonomous in
execution. They are instantiated independently of each
other and execute in their own threads, supporting our
requirement for independence. These objects can be
instantiated all on a single computing device or on multiple
computing devices. Although our base implementation is
written in Java, the mechanisms used are programming
language independent, allowing implementations in other
languages as we will describe later.

It is important to note that the architecture provides
scaffolding for context-aware computing. By this we mean
that it contains important abstractions and mechanisms for
dealing with context, but it is clearly not a complete
solution, nor is it meant to be. The architecture supports the
building of widgets and interpreters required by an
application, but will not necessarily have them already
available. Compared to input, there are a larger variety of

possible sensors used to sense context and a larger variety
of possible context. This makes it very difficult to provide
all possible combinations of widgets and interpreters.

Context Widgets
A context widget, as mentioned earlier, has much in
common with a user interface widget. It is defined by its
attributes and callbacks. Attributes are pieces of context
that it makes available to other components via polling or
subscribing. Callbacks represent the types of events that the
widget can use to notify subscribing components. Other
components can query the widget’s attributes and callbacks,
so they don’t have to know the widget capabilities at design
time. A context widget supports both the polling and
notification mechanisms to allow components to retrieve
current context information. It also allows components to
retrieve historical context information. The basic Widget
object provides these services automatically for context
widgets that subclass it.

Creating a new widget is very simple. A widget designer
has to specify what attributes and callbacks the widget has,
provide the code to communicate with the sensor being
used, and when new data from the sensor is available, call 2
methods: sendToSubscribers() and store() . The
Widget class provides both of these methods. The first
method validates the data against the current subscriptions.
Each time it finds a match, it sends the relevant data to the
subscribing component. For example, multiple applications
have subscribed to a Meeting Widget with different
callbacks, attributes, and conditions. When the widget
obtains new meeting information it sends it to the
appropriate subscribers.

The second method adds the data to persistent storage,
allowing other components to retrieve historical context
information. This addresses our requirement for the storage
of context history. The Widget class provides a default
implementation for persistent storage using MySQL, a
freeware database. The persistent storage mechanism is
“pluggable”. A widget designer not wanting to use the
default mechanism can provide a class that implements a
temporary cache and allows the storage and retrieval of
information from some persistent storage. The name of the
class is given to the widget at run time, allowing the new
storage mechanism to be used.

Context Servers
Context servers implement the aggregation abstraction,
which is one of our requirements. They are used to collect
all the context about a particular entity, such as a person,
for example. They were created to ease the job of an
application programmer. Instead of being forced to
subscribe to every widget that could provide information
about a person of interest, the application can simply
communicate with a single object, that person’s context
server. The context server is responsible for subscribing to
every widget of interest, and acts as a proxy to the
application.

The Server class is subclassed from the Widget class,
inheriting all the methods and properties of widgets. It can
be thought of, then, as a compound widget. Just like
widgets, it has attributes and callbacks, it can be subscribed
to and polled, and its history can be retrieved. It differs in
how the attributes and callbacks are determined. A server’s
attributes and callbacks are “inherited” from the widgets to
which it has subscribed. When a server receives new data, it
behaves like a widget and calls store() and
sendToSubscribers() .

When a designer creates a new server, she simply has to
provide the names of the widgets to subscribe to. In
addition, she can provide any attributes or callbacks in
addition to those of the widgets and a Conditions object.
The Conditions object is used in each widget subscription,
so the server only receives information it is interested in.
For example, the Anind User Server would have the
subscription condition that the name must equal “Anind”.

Context Interpreters
Context interpreters are responsible for implementing the
interpretation abstraction discussed in the requirements
section. Interpretation of context has usually been
performed by applications. By separating the interpretation
abstraction from applications, we allow reuse of interpreters
by multiple applications. An interpreter does not maintain
any state information across individual interpretations, but
when provided with state information, can interpret the
information into another format or meaning. A simple
example of an interpreter is one that converts a room
location into a building location (e.g. Room 343 maps to
Building A). A more complex example is one that takes
location, identity and sound information and determines
that a meeting is occurring. Context interpreters can be as
simple or as complex as the designer wants.

Context to be interpreted is sent to an interpreter’s
interpretData() method. It returns the interpreted
data to the component that called the interpreter.
Interpreters can be called by widgets, servers, applications
and even by other interpreters. When a designer creates a
new interpreter, she only has to provide the following
information: the incoming attributes, the outgoing
attributes, and an implementation of interpretData() .

Communications Infrastructure
All of the top-level objects (widgets, servers, and
interpreters) used are subclassed from a single object called
BaseObject. The BaseObject class provides the basic
communications infrastructure needed to communicate with
the distributed components and abstract away the details of
heterogeneous platforms and programming languages,
supporting heterogeneity and distribution. Applications use
this class to communicate with the context architecture. The
communications includes dealing with both the passing of
high-level data and low-level protocol details.

High-level Communications A basic communications

infrastructure is needed to support semantic or high-level
communications. BaseObject provides methods for
communicating with the widgets, servers, and interpreters.
In particular it facilitates subscribing and unsubscribing to,
querying/polling and retrieving historical context from
servers and widgets, requesting interpretations from
interpreters, and retrieving object-specific information like
version numbers and attributes.

When a component (an application, for example) wants to
subscribe to another component (a widget, for example), it
uses a general subscription and notification mechanism,
addressing our requirement to allow applications to access
context data in the same way as user input. When a
component wants to be notified of particular events in a
context widget, it subscribes to the widget, adding itself as
a “context handler”, and implements a single method called
handle() . In the subscription, it can specify a number of
options to narrow the scope of the subscription:

• Callback: the event of interest to the component
• Attributes: the particular widget attributes of interest
• Conditions: the conditions under which the widget should

return data to the subscribing component

These three options essentially act together as a filter to
control which data and under which conditions context
events are sent from a widget to a subscribing component to
be handled. This is an extension of the general subscription
mechanism, where only callbacks can be specified. This
helps to substantially reduce the amount of communication,
which is important in a distributed architecture for
performance reasons. This mechanism also makes it easier
for application programmers to deal with context events, by
delivering only the specific information the application is
interested in.

Figure 2. Example of application interacting with
context widget. Arrows indicate communications
flow.

When a widget sends callback data to a subscribing
application, the application’s BaseObject instance uses the
data from the callback to determine which object(s) to send
the data to. It calls that object’s handle() method. An
example of this is shown in Figure 2. An application has
subscribed (2a) to the Location Widget, wanting to know
when Gregory has arrived in Room 343. When the Location
Widget has new location information available (2b), it
compares the information to see if the information meets
the subscription conditions. If it does, it sends the
information to the application (2c) and the application’s

BaseObject routes it to the handle() method (2d).

Communications Fundamentals The BaseObject acts as
both a client and a server (in the client-server paradigm of
distributed computing). It is used to both send and receive
communications.

The BaseObject uses a “pluggable” communications
scheme. By default, it supports communications using the
HyperText Transfer Protocol (HTTP) for both the sending
and receiving of messages. The language used for sending
data is, by default, the eXtensible Markup Language
(XML). The BaseObject does, however, support the use of
other communications protocols and data languages. When
a designer wants an object to use a different protocol,
SMTP (Simple Mail Transfer Protocol) for example, she
creates an object that “speaks” the SMTP protocol for
outgoing communications and one for incoming
communications. She then passes the names of these
objects to the BaseObject at the time of instantiation. The
BaseObject uses these objects rather than the default HTTP
objects. In a similar fashion, a designer can replace XML
with use his own data encoding scheme.

XML and HTTP were chosen for the default
implementation because they support lightweight
integration of distributed components and allow us to meet
our requirement of architecture support on heterogeneous
platforms with multiple programming languages. XML is
simply ASCII text and can be used on any platform or with
any programming language that supports text parsing.
HTTP requires TCP/IP and is ubiquitous in terms of
platforms and programming languages that support it. Other
alternatives to XML and HTTP include CORBA and RMI.
Both were deemed too heavyweight, requiring additional
components (an ORB or an RMI daemon) and in the case
of RMI, would have forced us to use a specific
programming language – Java.

EXAMPLE APPLICATION: CONFERENCE ASSISTANT
We will now demonstrate the use of our architecture
through an example application that we have built. We
describe the Conference Assistant application using a
scenario we have executed in our lab. Following this, we
describe how context is used to provide new services to the
user. Finally, we describe how features in the architecture
were exploited to make this application easy to build.

Application Scenario
A user is attending a conference. When she arrives at the
conference, she registers, giving her personal information
as well as a list of interests. In return, she receives a copy of
the conference proceedings and a Personal Digital Assistant
(PDA). The application running on the PDA automatically
displays a copy of the conference schedule, showing the
multiple tracks of the conference, including both paper
tracks and demonstration tracks. On the schedule (Figure
3), certain papers and demonstrations are highlighted (light
gray) to indicate that they may be of particular interest to
the user.

Figure 3. Screenshot of the augmented schedule,
with suggested papers and demonstrations
highlighted (light-colored boxes) in the three tracks.

Figure 4. Screenshot of the Conference Assistant
note-taking interface.

The user takes the advice of the application and walks
towards the room of a suggested paper presentation. When
she enters the room, the PDA automatically displays the
name of the presenter and the title of the presentation. The
presenter is using a combination of PowerPoint and Web
pages for his presentation. A thumbnail of the current slide
or Web page is displayed on the PDA. The application
allows the user to create notes of her own to “attach” to the
current slide or Web page (Figure 4). As the presentation
proceeds, the PDA displays updated information for the
user. The user takes notes on the presented slides and Web
pages using the PDA. The presentation ends and the
presenter opens the floor for questions. The user has a
question about the presenter’s tenth slide. She uses her
PDA to control the presenter’s display, bringing up the
tenth slide, allowing everyone in the room to view the slide
in question. She uses the displayed slide as a reference and
asks her question. She adds her notes on the answer to her
previous notes on this slide.

The user looks back at the schedule on the PDA and notices
that the application has suggested a demonstration to see
based on her interests. She walks to the room where the
demonstrations are being held. As she walks past
demonstrations in search of the one she is interested in, the
PDA displays the name of each demoer and the
corresponding demonstration. She arrives at the
demonstration she is interested in. The application displays
any PowerPoint slides or Web pages that the demoer uses
during the demo. The user continues to use the PDA
throughout the conference for taking notes on both
demonstrations and paper presentations.

Figure 5. Screenshots of the retrieval application:
timeline (5a) and slideshow (5b). (Image was
touched up for clarity).

She returns home after the conference and wants to retrieve
some notes about a particular presentation. The user starts
her web browser and loads a retrieval applet using a URL
provided by the conference. The application shows her a
timeline of the conference schedule with the presentation
and demonstration tracks. The application uses a feature
known as context-based retrieval [10]. It provides a query
interface that allows the user to populate the timeline with
various events: her arrival and departure from different
rooms, when she asked a question, when other people asked
questions or were present or when a presentation used a
particular keyword. By selecting an event on the timeline
(Figure 5a), the user can view (Figure 5b) the slide or Web
page presented at the time of the event, information about
the event, and any personal notes she may have taken on
the presented information. She can then continue to view
the current presentation, moving back and forth between
the presented slides and Web pages.

In a similar fashion, a presenter can retrieve information
about their presentation including: names of the audience
members, names of people who asked questions and the
slide relevant to the question.

Use of Context
The application features in the scenario presented have all
been implemented. The application makes use of a wide
range of context. In this section, we discuss the types of
context used and how they were used to provide benefits to
the user.

When the user is attending the conference, the application
first uses information about what is being presented at the
conference and her personal interests to determine what
presentations might be of particular interest to her. The
application uses her location, the activity (presentation of a
Web page or slide) in that location and the presentation
details (presenter and title) to determine what information
to present to her. The context of the presentation facilitates
the user’s asking of a question. The context is used to
control the presenter’s display, changing to a particular

slide for which the user had a question.

After the conference, the retrieval application uses the
conference context to retrieve information about the
conference. The context includes public context such as the
time when presentations started and stopped, the names of
the presenters and the presentations and the rooms in which
the presentations occurred and any keywords the
presentations mentioned. It also includes the user’s personal
context such as the times at which she entered and exited a
room, the rooms themselves, when she asked a question
and what presentation and slide or Web page the question
was about. The application also uses the context of other
people, including their presence at particular presentations
and questions they asked, if any. The user can use any of
this context information to retrieve the appropriate slide or
Web page associated with the context.

Use of the Architecture
In this subsection, we discuss how the architecture and
widget library were used to develop this application. Figure
6 presents a snapshot of the architecture when a single user
is viewing a presentation. For multiple users and
presentations, the user and presentation architecture
segments are replicated appropriately. Table 1 lists all the
components and their use.

Table 1: Architecture components and
responsibilities: S = Servers, W = Widgets, I =
Interpreters
Component Responsibility

Registration (W) Acquires user registration and interests
Memo (W) Acquires user’s notes and relevant

presentation info
Recommender (I) Locates interesting presentations
User (S) Aggregates all information about the user
Question (W) Acquires audience questions and relevant

presentation info
Location (W) Acquires arrivals/departures of users
Content (W) Monitors PowerPoint or Web page

presentation, capturing content changes
Presentation (S) All information about a presentation

Figure 6. Conference Assistant architecture.
During registration, a User Server is created for the user. It
is responsible for aggregating all the context information
about the user and acts as the application’s interface to the
user’s personal context information. It subscribes to
information about the user from the public Registration

Widget, the user’s Memo Widget and the Location Widget
in each presentation space. The Memo Widget captures the
user’s notes and also any relevant context (relevant slide,
time, presenter name).

We use two different sensors in different implementations
of Location Widgets: a JavaRingTM and reader, and a
PinPoint 3D-iDTM indoor positioning system. The servers
and applications that use these widgets required no change
and did not need restarting when sensors were changed.

There is a Presentation Server for each physical location
where presentations/demos are occurring. A Presentation
Server is responsible for aggregating all the context
information about the local presentation and acts as the
application’s interface to the public presentation
information. It subscribes to the widgets in the local
environment, including the Content Widget, Location
Widget and Question Widget.

When an audience member asks a question using their
PDA, the Question Widget captures the context (relevant
slide, location, time) and notifies the local Presentation
Server of the event. The server stores the information and
also uses it to access a service provided by the Content
Widget, displaying the slide or Web page relevant to the
question.

The application being executed on the PDA does not
communicate with any widget directly, but instead
communicates only with the user’s User Server and the
local Presentation Server. It subscribes to the User Server
for changes in location and interests. It subscribes to the
local Presentation Server for changes in a presentation slide
or Web page when the user enters a presentation or demo
space and unsubscribes when the user leaves.

In the context-based retrieval application, all the necessary
information has been stored in the user’s User Server and
the public Presentation Servers. As shown in Figure 4, the
application allows the user to retrieve slides (and the entire
presentation) using context via a query interface. If
personal context is used as the index into the conference
information, the application polls the User Server for the
times and location at which a particular event occurred
(user entered or left a location, or asked a question). This
information can then be used to poll the correct
Presentation Server for the related presentation information.
If public context is used as the index, the application polls
all the Presentation Servers for the times at which a
particular event occurred (use of a keyword, presence or
question by a certain person). As in the previous case, this
information is then used to poll the relevant Presentation
Servers for the related presentation information.

EVALUATION OF ARCHITECTURE
In the previous section, we described the Conference
Assistant application and how it was designed. In this
section, we describe the benefits and limitations of the
architecture in the context of the Context Assistant and

other context-aware applications that we have built.

We have built multiple types of each object (widgets,
servers, and interpreters) and included this library of
objects in our Context Toolkit1. Our default implementation
of the architecture was developed in Java. However, the
abstractions and mechanisms that address our requirements
are both platform and programming language independent.
To demonstrate this, we have also written applications and
widgets in C++, Python, and Frontier. We have components
of the architecture executing on Windows CE, 95 and NT,
Linux, Solaris, IRIX, and the Macintosh platforms,
including mobile, wearable, and desktop machines.

Benefits
The benefits of the architecture are that it:
• supports lightweight integration of components
• makes it easy to add the use of context to existing

applications that don’t use context
• makes it easy to add more context to applications that

already use context
• hides the details of the context sensors
• supports reusability by multiple applications
In this section, we will discuss these benefits, using the
applications we have developed as examples.

The use of lightweight communications and integration
mechanisms supports the deployment of the architecture
and applications on multiple platforms using multiple
programming languages. We have implemented an In/Out
Board application that keeps track of who is in our building
and when they were last seen. This application has been
implemented in a stand-alone mode in Java, and on the
web2 using Frontier on a Macintosh and Python on Linux.
The Conference Assistant application was executed on a
Windows CE handheld device. The retrieval portion was in
Java executing in a web browser. The numerous
architecture components shown in Figure 5 for the
application ran on Windows CE, Windows 95 and NT.

From an application builder’s perspective, the architecture
makes it simple to add the use of context to applications
that previously did not use context. The DUMMBO [3]
application supports the capture of informal whiteboard
meetings. The original version did not use context and
began to capture audio and pen strokes when someone
started writing on the whiteboard. The application was
modified to initiate data capture when people were gathered
around the whiteboard, but had not yet started writing. The
change required the modification/addition of 25 lines of
Java code. The significant changes included 2 lines added
to use the architecture, 1 line modified to enable the class to
handle callbacks, and 17 lines that are application specific.

Based on these results, we argue that it is also simple to add
additional context to applications that already use the

1 The Context Toolkit may be downloaded at
http://www.cc.gatech.edu/fce/contexttoolkit/
2 See http://fire.cc.gt.atl.ga.us/inout for the web version

architecture. In the Conference Assistant application, the
use of context was made much simpler through the use of
the User and Presentation context servers. From the
application builder’s viewpoint, the servers make accessing
context information much easier than dealing with the
multiple widgets individually. If a new type of user context
was added to this application, the application could
continue to use a context server as a proxy to the context
information, requiring minimal changes.

A benefit of the architecture is that it hides the details of the
context sensors. This allows the underlying sensors to be
replaced, without affecting the application. The In/Out
Board and Conference Assistant have been used with
JavaRings and the PinPoint system.

An important feature of the architecture is independent
execution. This lets the context architecture run
independently of applications, which allows multiple
applications to use the architecture simultaneously. We
have built a number of applications that leverage off of the
context architecture we have running in our lab, including
the In/Out Board, a context-aware tour guide, the
Conference Assistant, and a context-aware mailing list that
only delivers mail to the current occupants of the building.

Current Limitations and Future Work
Although our architecture eases the building of context-
aware applications, some limitations remain. In particular,
the architecture does not currently support dealing with
unreliable sensor data, transparently acquiring context from
distributed components, and dealing with component
failures. We discuss each of these issues and propose
possible solutions.

All sensors have failure modes, making the data they
produce unreliable at some point in time. To add to this
problem, the data from many sensors must be interpreted to
make sense of it. In much the same way as speech input
must be recognized without a 100% accurate recognizer,
context from sensors must also be understood. The problem
with context is greater due to the fact that with speech
input, the user has the opportunity to give feedback about
incorrect recognition results. With context, this isn’t the
case. Recognized context is often used without being
displayed to the user. The architecture must provide support
for applications that may be using unreliable context
information. This support many include the use of sensor
fusion from multiple, heterogeneous sensors (with different
failure modes) to increase reliability, as well as the passing
of a reliability measure with each piece of context. We
currently perform sensor fusion in an ad hoc fashion, but
we are exploring a general mechanism for supporting it.

The architecture does not completely support the
transparent acquisition of context for applications. In order
for an application to use a widget, server, or interpreter, it
must know both the hostname and port the component is
being executed on. When the architecture supports a form
of resource discovery [17], it will be able to effectively hide

these details from the application. This will allow the
application to really treat local context widgets like user
interface widgets. When an application is started, it could
specify the type of context information required and any
relevant conditions to the resource discovery mechanism.
The mechanism would be responsible for finding any
applicable components and for providing the application
with ways to access them. We have investigated many
existing techniques for supporting resource discovery and
are currently in the process of selecting one to implement.

Another limitation of the architecture is dealing with
component failures. When a component fails, it has to be
manually restarted. With a requirement for perpetual
execution, this is clearly not an admirable property. The
architecture does keep track of existing subscriptions
between component restarts. So, when a component fails
and is restarted, it knows what components were subscribed
to it so it can continue notifying them of context events.
But, the architecture needs a facility for automatically
restarting components when they fail. We are currently
investigating the use of watchdog processes and redundant
components for this purpose.

RELATED ARCHITECTURE WORK
In the discussion on context handling at the beginning of
the paper, we discussed previous work that influenced us in
our decision to treat context like input. We will now look at
other related work that presents architectures that extend
beyond supporting the abstraction of sensor details.

The metaDesk project [18] used sensor proxies, a concept
similar to context widgets, to separate the details of
individual sensors from the application. This system
architecture supported distribution and a simple form of
resource discovery. Only a polling mechanism was
provided and interpretation was left to individual
applications.

The proposed Situated Computing Service [9] has an
architecture that is similar in intent to ours. It insulates
applications from sensors used to acquire context. A
Situated Computing Service is a single server that is
responsible for both context acquisition and abstraction. It
provides both polling and notification mechanisms for
accessing relevant information. It differs from our research
in that it uses a single server to act as the interface to all the
context available in an environment as opposed to our
modular architecture. A single prototype server has been
constructed as proof of concept, using a single sensor type.

The AROMA system [13] was exploring awareness in
media spaces. Its architecture used the concepts of sensor
abstraction and interpretation to provide awareness of
activity between remote sites. The interpreted context at
each site was sent to the other sites for display.

The CyberDesk system [6] used minimal context to provide
relevant services to a desktop computer user. Its
architecture was modular, separating context acquisition,

abstraction, and notification. It did not use a distributed
architecture and provided no support for aggregation.

CONCLUSIONS
We have presented an architecture for supporting the
software design and execution of context-aware
applications. Our architecture builds upon our previous
work [15] that introduced the idea of a context widget for
treating context like user input. We generated requirements
for the architecture based on the differences between
dealing with context and input. Using these requirements,
we designed and built an architecture to make it easier for
applications to deal with context. We demonstrated the use
of the architecture through a complex application, the
Conference Assistant. We discussed the benefits of the
architecture through example applications that we have
built. Finally, we described the limitations of the current
architecture and, as part of our future work, plan to address
these with the suggested improvements. We intend to test
the architecture through the use of a larger variety of
context and the building of more complex applications.

ACKNOWLEDGMENTS
We would like to thank Jen Mankoff for her help with the
context widget concept, Jason Brotherton for his work on
DUMMBO, and the other members of the Future
Computing Environments research group for their ideas and
for providing a testbed for our applications. This work was
supported by NSF CAREER Grant # 9703384, NSF ESS
Grant EIA-9806822, a Motorola UPR and a Hitachi grant.

REFERENCES
1. Arons, B. The design of audio servers and toolkits for

supporting speech in the user interface. Journal of the
American Voice I/O Society 9 (Mar. 1991), 27-41.

2. Bauer, M. et al. A collaborative wearable system with
remote sensing. In Proceedings of International
Symposium on Wearable Computers (October,
Pittsburgh, PA), IEEE, 1998, pp. 10–17.

3. Brotherton, J.A., Abowd, G.D. and Truong, K.N.
Supporting capture and access interfaces for informal
and opportunistic meetings. Georgia Tech Technical
Report, GIT-GVU-99-06. Dec, 1998.

4. Clark, H.H. & Brennan, S.E. Grounding in
communication. In L.B. Resnick, J. Levine, & S.D.
Teasley (Eds.), Perspectives on socially shared
cognition. Washington, DC. 1991.

5. Codella, C.F. et al. A toolkit for developing multi-user,
distributed virtual environments. In Proceedings of
Virtual Reality Annual International Symposium (Sept.
1993, Seattle, WA), IEEE, 1993, pp. 401–407.

6. Dey, A.K., Abowd, G.D. and Wood, A. CyberDesk: A
framework for providing self-integrating context-aware
services. Knowledge-Based Systems 11, 1999, pp. 3-13.

7. Harrison, B.L. et al. Squeeze me, hold me, tilt me! An
exploration of manipulative user interfaces. In
Proceedings of CHI'98 (April 18-23, Los Angeles,
CA), ACM/SIGCHI, N.Y., 1999, pp. 17–24.

8. Horvitz, E. et al. The Lumiere Project: Bayesian user
modeling for inferring the goals and needs of software
users. In Proceedings of the 14th Conference on
Uncertainty in Artificial Intelligence (July, Madison,
WI), 1998, pp. 256-265.

9. Hull, R., Neaves, P., and Bedford-Roberts, J. Towards
situated computing. In Proceedings of International
Symposium on Wearable Computers (October, Boston,
MA), IEEE, 1997, pp. 146–153.

10. Lamming, M. et al. The design of a human memory
prosthesis. Computer Journal 37, 3 (1994), 153-163.

11. MacIntyre, B. and Feiner, S. Language-level support
for exploratory programming of distributed virtual
environments. In Proceedings of UIST’96 (Nov. 5–8,
Seattle, WA), ACM/SIGCHI, N.Y., 1996, pp. 83–94.

12. Greenberg, S. (1990). Sharing views and interactions
with single-user applications. In Proceedings of the
ACM/IEEE Conference on Office Information Systems
(Cambridge, MA), pp. 227–237.

13. Pederson, E.R. and Sokoler, T. AROMA: Abstract
representation of presence supporting mutual
awareness. In Proceedings of CHI'97 (March 22–27,
Atlanta GA), ACM/SIGCHI, N.Y., 1997, pp. 51–58.

14. Rekimoto, J. Tilting operations for small screen
interfaces. In Proceedings of UIST’96 (Nov. 5–8,
Seattle, WA), ACM/SIGCHI, N.Y., 1996, pp. 167-168.

15. Salber, D., Dey, A.K., and Abowd, G.D. The Context
Toolkit: Aiding the development of context-enabled
applications. To appear in Proceedings of CHI'99
(May 15–May 20, Pittsburgh, PA), ACM/SIGCHI,
N.Y., 1999.

16. Schilit, W.N. System architecture for context-aware
mobile computing. Ph.D. Thesis, Columbia University.
May 1995.

17. Schwartz, M.F. et al. A comparison of internet
resource discovery approaches. Computing Systems,
(Fall 1992), 461-493.

18. Ullmer, B. and Ishii, H., The metaDESK:
Models and prototypes for tangible user interfaces. In
Proceedings of UIST’97 (Oct. 14–17, Banff, Alberta,
Canada), ACM/SIGCHI, N.Y., 1997, pp. 223-232.

19. Want, R. et al. The Active Badge location system.
ACM Transactions on Information Systems 10, 1 (Jan.
1992), 91–102.

