Two Case Studies of Software Architecture for
Multimodal Interactive Systems:

Voice-Paint and a Voice-enabled Graphical
Notebook

Arno Gourdol, Laurence Nigay, Daniel Salber and Joélle Coutaz
Université Joseph Fourier

Laboratoire de Génie Informatique

B.P. 53 X — F-38041 Grenoble Cedex — France
gourdol@imag.fr

Abstract

This paper discusses software architectures of multimodal
systems. The recent availability of new input technologies
brought a whole new type of systems, able to support
communication with the wuser through multiple interaction
channels. Multimodal systems that allow modalities to be
combined seem to be the most promising in the field of
multimodal interaction. The aim is to overcome limitations of
these modalities when used separately.

We call synergic systems, systems which allow both different
modalities to be used in parallel and modalities to be combined to
obtain a command. VoicePaint and Notebook are two multimodal
synergic systems developed by our team. We focus on their
software architectures in this article.

Introduction

Our goal is to identify software architecture components through
the presentation of available multimodal systems. The design of
software architectures for multimodal systems is still an area of
exploration: parallel to the development of graphical user
interfaces, natural language processing, speech recognition,
gesture analysis and computer vision have made significant
progress. Systems integrating these techniques and based on the
usage of multiple modalities open a complete new world of
experience.

We first propose a taxonomy of multimodal systems and then
introduce two multimodal applications developed in our team,
VoicePaint and NoteBook. Through the presentation of the applied
software architecture model we identify the components involved
in the two applications. We highlight the difference between




implementation modules and model components by detailing each
component of the software design of VoicePaint and NoteBook. We
then focus on architecture aspects specific to multimodal
systems such as abstract representation mechanism, media-
dependent versus media-independent data, fusion of data, and
levels of fusion.

1. Taxonomy

A modality is associated with a physical hardware device.
Keyboards, mice, microphones, graphics displays, allow the user
to communicate with a system using the corresponding
modalities (typing, graphic input, speech, graphic output).

A multimodal system is a system that supports many modalities
for input and output. For example, a system allowing interaction
using a keyboard (typing modality) and a microphone (speech
modality) is multimodal.

We propose a classification for multimodal systems, based on a
continuous classification space defined by two axes:

* Supported use of the modalities: values along this axis
indicate to what extent different modalities can be used at
the same time. We distinguish two main levels: sequential (the
modalities must be used one after another) and parallel
(modalities may be used simultaneously).

* Level of interpretation of input data or generation of output
data: values along this axis indicate how a single command or
result is issued by combining modalities. Independent
commands are created with only one modality. Combined
commands are created with several modalities.

To classify a system according to these criteria, we identify a
set of its features fj (e.g. supported commands). Each feature f;

is weighted according to its estimated importance (wj ) and given
an estimation of its location along the two previously defined

axes, giving a point p;j.

fi = (ppw;)

The position y of the considered system in the classification
space is defined by the following equation.

y=;—wx2pixwi 2w=2wi




Figure 1 shows the diagram and the approximate classification of
VoicePaint and Notebook. Systems above the curved line are
considered multimodal.

Level of input data interpretatiol
or output data generation

\

Alternate Synergic

Combined |- - — — __ goynerg
Note@)k @
Voichaint
i Concurrent

Independent| ilé(c 77777 o

\

\ \ -

Sequential Parallel Supported use

of the modalities

Figure 1. A Taxonomy of Multimodal Interactions
and Classification of NoteBook and VoicePaint

We consider four particular points in the classification space,
corresponding to particular values of the axes: exclusive,
alternate, concurrent, synergic.

* Exclusive: data expressed through different modalities are
interpreted independently. For example, a graphical and vocal
interface where the user has to switch explicitly between
modes offers two different modalities but only one can be
used to express a single command.

+ Alternate: data expressed through different modalities can
eventually be combined. For example, the Apple® Macintosh®
Finder™ allows the user to select a document with the mouse
and then open it with the keyboard (by typing the keyboard
shortcut Command-0O). The two modalities (pointing and
typing) are used sequentially and combined into a single
action.

* Concurrent: if input data are interpreted independently. For
example, the VoiceFinder is a system that adds voice input to
the Macintosh Finder [Articulate 90]; with this system, the




user can issue the voice command “Empty the Trash” while
simultaneously opening a document by double-clicking it. The
two modalities (speech and mouse) are used in parallel from
the user perspective, but they express two independent
commands.

* Synergic: if input data are combined. For example, in the
VoicePaint or NoteBook applications, the user enters a single
command using two modalities (speech and mouse) in parallel;
the input data are combined to be interpreted by the system.

We classify VoicePaint and Notebook as synergic multimodal
applications, because of their closeness to the synergic point.
Systems allowing modalities to be combined and particularly
synergic systems seem to be the most promising, but our
knowledge for designing and building such systems is very
primitive. We deal here only with systems called synergic in our
taxonomy.

2. Presentation of VoicePaint and NoteBook

2.1. VoicePaint, a voice-enabled drawing application

VoicePaint is a colour, pixel-oriented drawing program (a la
MacPaint). It handles speech, keyboard and mouse inputs. The
application is developed on the Apple Macintosh platform using a
custom application framework, Human Interface Kernel (HIK)
[Gourdol 89].

The voice services interface and voice acquisition hardware is
VoiceNavigator by Articulate Systems [Articulate 90].
VoiceNavigator provides discrete, speaker dependent voice
recognition.

VoicePaint is a traditional Macintosh application with all the
standard interface elements, as defined in the Apple User
Interface Guidelines [Apple 86]. Because of this, mouse and
keyboard can be used to manipulate windows, menus, dialogues.
But because it is also a voice-enabled program, commands may
also be issued by voice. For example it would be possible to
create a new document or print the current one using voice
commands.

VoicePaint also allows to use voice commands to modify brush
attributes while drawing; this feature relies on synergic data
fusion and would not be possible without multimodal input.
VoicePaint is more completely described in [Gourdol 91].




[ & File Edit UoicePaint
=—————— |Intitled - 1 gm
Bigger Lighter

Yery Big . Yery Light .
Big Light
Small Dark

. .
Yery Small Very Dark

Smaller Darker

[O[0]Of=[e-[s

Figure 2. A snapshot from VoicePaint

2.2. Notebook, a voice-enabled electronic notebook

The Notebook application is a voice-enabled electronic notebook
that handles both speech, mouse and keyboard inputs. The user can
write a note, turn or remove pages from the notebook.

The voice interface services are provided by the Carnegie Mellon
Spoken Language Shell (CM_SLS) [Lunatti 91].

Speech inputs apply to commands only. The content of the notes
have to be typed in, they cannot be dictated. This limitation
reduces the size of the application vocabulary, i.e. the set of
words that the application must “know”. For example it is
possible to create a new note, or search a given note using voice
commands.

Synergic data fusion is used to perform the insertion of a new
note by specifying the insertion position using the mouse and
issuing the voice command "Insert a note".

The application is developed on the NeXT workstation with
Interface Builder [Webster 89].

A complete definition of the Notebook external specifications is
provided in [Nigay 91a].




nNng e

h-_ -

Figure 3. A snapshot from the Notebook application

To develop these two applications, we have applied the same
software architecture model. We will now present this model and
show how we used it to build our two applications.

3. Software architecture aspects for multimodal
systems

First of all, we detail each component of our software
architecture model and their relationships. This model, which
integrates multiple modalities, derives from models intended for
graphical user interfaces only, such as the Arch model [UIMS 91]
and the PAC-Amodeus model [Nigay 91].

In a second part, we show how the model can be applied to design
real applications, using VoicePaint and NoteBook as examples.

3.1. The applied software architecture model

This model aims at meeting the flexibility and adaptability
software quality criteria of McCall [McCall 77], thus allowing
efficient management of modifications in the application. Some
of the components of the model are common with those of the
Arch model and the PAC-Amodeus model. Figure 3 shows the
components of the model and their relationships. Each of these
components is described below.




Dialogue Controller

Conceptual Presentatior
Objects Objects
Interface with th Presentation Techniqu
Functional Core Component

Set of interactive objects
provided by a toolbox

Domain adaptator

Speech Input :
Parser and Mapper

Domain Objects Interaction Objects

Y

Low Level Interaction
Component

Functional Core

L

Windowing System

§

Domain specific
component

Speech Input :
Recognition Engine

e

Figure 4. The software components of the applied model and the
interfaces between them.

The Functional Core (FC) implements domain specific concepts in
a presentation independent way.

The |Interface with the Functional Core (IFC) allows
communication between its two surrounding components,
implementing a communication protocol. This protocol is fully
described in [Coutaz 91].

The Dialogue Controller (DC) is the keystone of our model. It has
the responsibility for task-level sequencing. Each task of the
end-user corresponds to a thread of dialogue. This observation
suggests a multiagent decomposition: a collection of agents can
be associated with each thread of dialogue.

The DC receives events both from the FC via the IFC and from the
user via the Low-Level Interface Component (LLIC) and the
Presentation Techniques Component (PTC): the level of
abstraction of events received from the user is the command

-7 -



level (events may be the identifier or the parameters of a
command). The lexical and syntactic analysis of user events have
been performed in the PTC and LLIC components. At this level, the
modality of the events is lost.

The Presentation Techniques Component (PTC) bridges the gap
between the Dialogue Controller (DC) and the Low Level
Interaction techniques.

The PTC describes the presentation (i.e., Image of the system as
defined by D. Norman [Norman 86]). It implements the perceivable
behaviour of the application for outputs as well as input
commands. The interaction media is taken into account only at
this level of abstraction.

Regarding outputs, the Presentation Objects, which convey data
to be presented to the user, are translated in terms of one or
several Interaction Objects. Interaction Objects are built from
services provided by toolboxes such as Motif™ or Macintosh
System 7 Toolbox

As an example of translation performed inside the PTC, let us
consider an example confirmation message from NoteBook, asking
the user if he really wants to delete a note. The confirmation
message is a Presentation Object and can be presented to the user
with a graphical representation, i.e. a window displaying a
message, compound of basic Interaction Objects such as a
Window, an OK Button and a Text Label. The Presentation Object
may also be mapped onto a voice message such as: “Do you really
want to delete this note?”. There are at least three ways to
define the mapping between the Presentation Object and the
Interaction Objects:

* the mapping might be hard-coded, the same Interaction
Objects are always used for the same Presentation Object;

- the user could also choose the Interaction Objects, for
example the user can decide that all error messages should be
spoken, i.e. presented using voice Interaction Objects;

- the mapping can also be defined by a set of rules, for
instance based on an interaction history or a user model.

As for user’s inputs, the PTC is in charge of the syntactic
analysis of the user events. It dispatches the events towards the
DC. This component depends on the syntax of the interaction
language used by the application. It does not, however, depend on
the semantic level of the application.

It is the right place to abstract or standardize different types
(different interaction modalities) of events to obtain a command
(identifier and/or parameters of a command).

-8 -



The Low Level Interaction Component (LLIC) denotes the
underlying platform, both software and hardware. It supports the
physical interaction with the user. It manages (time-stamps and
gueues) end-user's events from different media and has the
responsibility for their lexical analysis.

Some of the low-level events are not transmitted to the PTC.
Indeed, lexical tasks such as resizing a window, are locally
performed by the LLIC. In addition, in the case of spoken
utterances, this component could include mechanisms for
confirmation allowing the user to intercept a recognition.

The LLIC, or part of it, does not depend on the application. It
includes basic services such as the windowing system, the spoken
language shell etc. From the developer's perspective, it is
considered as a constraint.

To sum up, let’s see how the system reacts to a user action. Input
events from the user are fed into the Low-Level Interaction
Component. They are then transformed into Interaction Objects,
and handled to the Presentation Techniques Component, which
may transform them into Presentation Objects. Those objects are
then processed by the Dialogue Controller. The Controller
eventually creates Conceptual Objects and passes them to the
Interface with the Functional Core. This “domain adaptor” then
transforms them into Domain Objects which are then processed
by the Functional Core. Other Domain Objects are created, and
follow the reverse path, up-to, if needed, the Low-Level
Interaction Component. At each stage, objects are processed
locally and discarded if possible. That is, the Functional Core will
probably never deal with each and every key presses, but rather
with string of characters, or still more abstract objects.

We need now to show how we applied this software architecture
model to the software design of the VoicePaint and NoteBook
applications.

3.2. From Model to Reality !

This section describes the software architecture design of
VoicePaint and NoteBook. The components implementing these
two applications are those exposed in the previous section.
However, we show that some discrepancies between the design
and the model may appear, mainly due to the software
development tools.

3.2.1 The software design of VoicePaint

The VoicePaint architecture consists in the software components
exposed in the software architecture model:

-9 -



The functional core (CorePaint) contains primitives applying dyes
onto a canvas, taking into account parameters of the brush as
well as the dynamic of the application of the brush (i.e. more
paint can be applied at the beginning of the stroke than at the
end).

Because of the conceptual simplicity of VoicePaint, the Domain
Adaptor does nothing in our case.

The Dialogue Controller (DC) is made up of a hierarchy of PAC
agents and is supplemented by the Dialogue Manager of Human
Interface Kernel (HIK). This Dialogue Manager provides high level
standard services to the application program. These services are
available without any agent hierarchy. This way, the PAC agents
hierarchy of the Dialogue Controller is made simpler.

The Presentation Techniques Component (PTC) dispatchs
commands to the appropriate agent in the PAC hierarchy of the
DC. Voice commands are received by the PTC as strings from the
Low-Level Interaction Techniques Component, then the PTC
abstracts the received string (Interaction Object) into a command
(Presentation Obiject).

The Low-Level Interaction Techniques Component (LLIC) includes
the voice recognition services provided by the Voice Navigator
recognition system, the Macintosh Toolbox and HIK for the
graphical input and output.

3.2.2 The software design of the Notebook

Each component of the model exposed before, appears in the
design of the Notebook. There is a slight difference between the
implementation modules of the Notebook and model components,
due to the software development tools. Indeed, the Notebook has
been implemented in Objective-C on the NeXT workstation using
NeXT Interface Builder [Webster 89] to define the graphical
behaviour and CM-CLS to define the speech behaviour.

The FC manipulates a set of text files. Its main functions cover
the standard file manipulation functions. No specific code has
been written for it.

The IFC maintains a mapping between concepts of the FC and
concepts belonging to the DC, for example, the link between the

- 10 -



number of a note (a DC concept) and the corresponding file name
in the FC.

The DC is organized as a hierarchy of agents. For example there is
one agent dedicated to the management of the Create Note and the
Delete Note commands. It receives media independent messages.
The agent is linked with the task and does not care how the user
provided the message (i.e., which interaction modalities have
been chosen to express a particular command).

The PTC is split into two main parts: the graphical definition
(input and output) and the speech definition (input only).

The graphic definition is defined using Interface Builder.
Interface Builder is a tool that allows the developer to define the
graphical behaviour by direct manipulation. The link between the
DC and the PTC is established using outlets (symbolic targets)
mechanism (DC to PTC) and the action (call-back procedure)
mechanism (PTC to DC).

In CM-SLS, the speech behaviour is defined with a grammar. This
grammar is application-dependent and is used to parse the
recognized utterances. To bridge the gap between the PTC and the
DC, we defined a mapper between interaction objects (i.e.
recognized utterances parsed through the parser) and
Presentation objects (the Presentation part of an agent).

The LLIC is also split into two parts:

* Graphic output and mouse-key events are embedded inside
Interface Builder.

* Interaction objects passed from the LLIC to PTC are
recognized utterances (i.e. spoken utterances recognized by
the CM-SLS), i.e. a string built up from a set of recognized
words.

We showed that our architecture model is well-suited for the
design of real applications. We would now like to point some
aspects that are specific to multimodal interaction.

4. Our software architecture model and
multimodal interaction handling

As shown through the presentation of our two applications, the
implementation of synergic multi-modal user interfaces requires
the fusion of several different objects of various modelling
techniques. Each of these modelling techniques is dedicated to a
specific modality. The fusion of these objects of different
modelling techniques leads us to answer these two questions:

- 11 -



* How to perform the fusion? Does a uniform framework or
common representation help?

« At which level of the software architecture do we have to
perform the fusion?

We expose our views of these two problems in the following
paragraphs and explain how we resolved it in the design of our
two applications.

4.1. How to perform the fusion?

The integration of various modelling techniques leads to define a
common representation at a particular level of abstraction.
Moreover the use of a common representation for fusion is two-
fold:

* The common representation might be used to represent data
to be fusionned.

+ The common representation might be used to represent the
results of fusion.

In our applications, we use a common representation for
multimodal fusion. Because the fusion is performed at the
Dialogue Controller level, we use an abstract command
representation. Whenever possible, media-independent commands
should be used. They provide a greater flexibility to the user by
allowing him to choose the media used to specify its command
without making the dialogue controller more complex. Fusions are
also easier to do this way.

The interaction modality discrimination appears in the
Presentation Techniques Component. At this level of abstraction,
interest in events is expressed using a formalism specific to
each interaction media. For example, in the Notebook application,
the location of mouse events determines which agent of the DC is
concerned, a way to translate agent's interest. Agent’s interest to
some speech events is specified using a grammar. The
Presentation Techniques Component is in charge of abstracting
the media-dependent data into a complete or incomplete command
to be sent to the Dialogue Controller.

This mechanism implies an implicit multimodal fusion inside the
Dialogue Controller which is not dependent of media. Although we
aim at a media-independent Dialoguer Controller, a mention of
which media are used to specify the abstract command should be
available. Sometimes, the PTC would not be able to abstract: in
this case it is important to specify the media. For example, to
send a voice message in a voice mail system, we are interested in
the digitized sound wave, and not in the abstract command it may
(or more likely may not) represent. Moreover, in the general case,

- 12 -



even if the PTC is able to abstract data, the Dialogue Controller
should be able to backtrack and reverse to the media-dependent
data. This is the reason why the mention of the media is
necessary.

We now study into details how fusion is performed in our
applications. As mentioned above, we do not do complex syntax
analysis, but let our agent architecture do the work for us.

For this purpose, we use:

*in VoicePaint, a lightweight multitask kernel built into HIK
to allow the input of several media at the same time,

*in Notebook, two different processes, one to handle speech
input and one to manage the graphical behaviour.

As a result, for example, while a mouse command is processed,
voice messages can be acquired, recognized, and sent to the
appropriate agents. We chose to have the fusion of events done by
a dedicated supervisor agent. No explicit fusion has to be
specified either in the mouse or voice handler. Instead, we just
allow the occurrence of several different media at the same time.
Each communication mode can be represented with as many event
messages as necessary; these messages are sent to the agents
and their processing can be done in parallel or in synergy.
Although our approach does not allow complex, media dependent
analysis (of the "Put That There" kind), it is an easy way to allow
multimodal input. It is extensible, and it significantly enhances
otherwise monomodal applications.

On the other hand, to allow complex media dependent analysis, the
common representation could be used as a frame to perform the
fusion such as in ICPDraw [Wretd 89]. In this case the different
modelling techniques can be hooked onto this unique abstract
representation.

In the short term, we think that a medium range approach, using a
common representation both as a framework for fusion and as the
result of fusion is a reasonable approach. Indeed, this compromise
allows:

* an easy backtracking inside the mechanisms of abstractions,
- fusions at different levels of abstraction.

Although we only perform implicit fusion inside the Dialogue
Controller level in our two applications, we have identified three
levels of fusion taking place at different places inside our

- 13 -



software architecture. We present these levels of fusion in the
following paragraph.

4.2 Levels of fusion

As we explained above, synergic multimodal interaction implies
fusion of data provided by the user using different media. Inside
our software architecture model, we identify three levels of
fusion:

+ Semantic fusion: The DC is a good place for combining the
results of two commands. To cement these results we use a
dedicated agent dispatching the results to other agents. This
is the case of Voice Paint.

+ Syntactic fusion: The hierarchy of DC agents is also a good
place to implement synergic multimodal interactions where
multimodal events can be combined into a higher level to
complete a command. The specification of a command often
involves user actions distributed over multiple agents. These
user's actions could be performed using different modalities.
To cement the distributed multimodal actions into a higher
abstraction (command level), we use a dedicated agent, parent
of the agents which receives the elementary actions. This is
the case of the Notebook.

 Lexical fusion: The lexical fusion is performed by the LLIC. A
typical example of lexical fusion is found on the Macintosh:
the Shift key combined with mouse click allow multiple
selections.

5. Conclusion

We propose a software architecture model that provides a
structure for the design of multimodal applications; through two
examples, we detailed how this model suits the particular needs
of the conception of real multimodal applications. However, our
aim is not to provide a rigid organization, but we showed that
functionalities can shift from component to component. We also
identified different levels of abstraction, but the Ilevel of
abstraction of data manipulated by each component may be
adapted to the nature of data. Thus, our model can be tailored to
take into account the goals of the developers, their weighting of
quality criteria, and the constraints of the development tools.

Although our model, an extension from the Seeheim model,
provides a way to design software architectures for multimodal
application, we feel the urge to provide a media-independent way
to specify commands. We are going to study a reliable mechanism,

- 14 -



independent of the media used, allowing incomplete commands
and continuous data capture.

6. References

[Apple 86] Apple Computer, Inc. Human Interface Guidelines:
The Apple Desktop Interface, Adisson Wesley, New-York, 1986.

[Articulate 90] Articulate Systems Inc., The Voice Navigator
Developer Toolkit, 1990.

[Coutaz 91] J. Coutaz, S. Balbo: Applications: a
dimension space for User Interface Management Systems. In
proceedings of CHI'91 Conference, New Orleans, April 27-May 2,
1991, pp. 27,32.

[Gourdol 89] Human Interface Kernel: Developer’s Guide,
1989.
[Gourdol 91] Architecture des Interfaces Homme-

Machine Multimodales, Master’s Thesis, Université Joseph Fourier,
1991.

[Lunatti 91] J-M Lunatti, A. |. Rudnicky, Spoken
Language interfaces: The OM system. In proceedings of CHI'91
Conference, New Orleans, April 27-May 2, 1991, pp. 453,454.

[McCall 77] J. McCall, Factors in software quality. (Ed.)
General Electric, 1977.

[UIMS 91] The UIMS Workshop Tool Developers A Metamodel
for the Runtime Architecture of an Interactive System, 1991.

[Nigay 91a] L. Nigay, A case Study of Software
Architecture for Multimodal Interactive System: a voice-enabled
graphic notebook, Technical Report, October 1991.

[Nigay 91Db] L. Nigay, J. Coutaz, Building User
Interfaces: A Cookbook for Organizing Software Agents. ESPRIT
Basic Research Action 3066 AMODEUS (Assimilating Models of
DEsigners, Users and Systems), 1991.

[Norman 86] D. A. Norman, S. W. Draper, User Centred System
Design. Lawrence Erlbaum Associates Publ., 1986.

- 15 -



[Webster 89] B. F. Webster, The NeXT Book, Addison Wesley,
New York, 1989.

[Wilson 91] M.D. Wilson, D. Sedlock, J.-L. Binot, P.
Falzon: “An Architecture for Multimodal Dialogue”, in M.M. Taylor,
F. Neel & D.G. Bouwhuis (Eds.), Proceedings of the second Venona
Workshop on Multi-Modal Dialogue, 1991.

[Wretd 89] J. Wretd, J. Caelen,ICPDraw, Rapport final du
projet ESPRIT MULTIWORKS n° 2105, 1989.

- 16 -



