

Multimodal Systems:
Aspects of Events Fusion and a Taxonomy

Arno P.J. Gourdol, Laurence M.B. Nigay, Daniel Salber and Joëlle Coutaz

Université Joseph Fourier
Laboratoire de Génie Informatique
BP 53 X — F-38041 Grenoble C

EDEX

 — France
gourdol@imag.fr

Abstract

This paper discusses multimodal systems. We have defined a taxonomy of mul-
timodal interactions and built two example multimodal systems. We consider sev-
eral levels where the fusion can take place in the software architecture of those
systems. We emphasize the need for a common abstract representation to repre-
sent input data and commands, and to combine them successfully. This is still an
area of exploration.

Keyword Codes: H.1.2; D.2.2; H.5.1
Keywords: Information Systems,User/Machine Systems; Software, Software Engi-
neering, Tools and Techniques; Information Systems, Information Interfaces and
Presentation, Multimedia Information Systems

1. INTRODUCTION

Communication between the computer and the user has been shown to be sig-
nificantly enhanced when different input modes are simultaneously employed
[Hauptmann 89]. There is a high potential for systems combining input modes,
but our knowledge for designing and building them is still primitive.

This paper will present a definition and classification of such multimodal sys-
tems. We will then discuss some possible software architectures for such systems,
allowing data fusion.

We have built two examples multimodal systems, VoicePaint and Notebook.

■

VoicePaint

 is a colour, pixel-oriented Apple

®

 Macintosh™ drawing programme
(

à la

 MacPaint

®

). It handles speech, keyboard and mouse inputs. VoicePaint
was developed using a custom application framework, Human Interface Kernel
(HIK) [Gourdol 89] and is more completely described in [Gourdol 91].

■

The

Notebook

 application is a voice enabled, electronic notebook that handles
both speech, mouse and keyboard inputs. The application is developed on the
NeXT

®

 workstation with NeXT Interface Builder

®

. The voice interface services
are provided by The Carnegie Mellon Spoken Language Shell [Lunatti 91].
More complete references are available in [Nigay 91a].

2. DEFINITIONS AND TAXONOMY

A

modality

 is associated with a physical hardware device. Keyboards, mice,
microphones, graphics displays, allow the user to communicate with a system
using the corresponding modalities (typing, graphic input, speech, graphic out-
put).

A multimodal system is a system that supports many modalities for input and
output. For example, a system using a keyboard (typing modality) and a mouse
(graphic input modality) is multimodal.

We propose a classification for multimodal systems, based on a continuous clas-
sification space defined by two axes:

■

Supported use of the modalities:

 values along this axis indicates to what extent
different modalities can be used at the same time. We distinguish two main
levels: sequential (the modalities must be used one after another) and parallel
(modalities may be used simultaneously).

■

Level of interpretation of input data or generation of output data:

 values along
this axis indicates how a single command or result is issued by combining
modalities. Independent commands are created

with only one modality.
Combined commands are created with several modalities.

To classify a system according to these criteria, we identify a set of its features

f

i

 (e.g. supported commands). Each feature

f

i

 is weighted according to its esti-
mated importance

(w

i

)

 and given an estimation of its place along the two previ-
ously defined axes, giving a point

p

i

.

The position

γ

 of the considered system in the classification space is defined by
equation (1).

Figure 1. A Taxonomy of Multimodal Interactions and Classification of NoteBook
and VoicePaint

Figure 1 shows the diagram and the approximate classification of VoicePaint
and Notebook. Systems above the curved line are considered multimodal.

We consider four particular points in the classification space, corresponding to
particular values of the axes: exclusive, alternate, concurrent, synergic.

■

Exclusive:

 data expressed through different modalities are interpreted
independently. For example, a graphical and vocal interface where the user has
to switch explicitly between modes offers two different modalities but only one
can be used to express a single command.

■

Alternate:

 data expressed through different modalities can eventually be
combined. For example, the Apple Macintosh Finder™ allows the user to select
a document with the mouse and then open it with the keyboard (by typing the

f i pi wi(,)=

γ
1
Σw
------- pi wi×

i
∑×= Σw wi

i
∑= 1()

keyboard short-cut Command–O). The two modalities (pointing and typing) are
used sequentially and combined into a single action.

■

Concurrent:

 if input data are interpreted independently. For example, the
VoiceFinder is a system that adds voice input to the Macintosh Finder
[Articulate 90]; with this system, the user can issue the voice command “Empty
the Trash” while simultaneously opening a document by double-clicking it. The
two modalities (speech and mouse) are used in parallel from the user
perspective, but they express two independent commands.

■

Synergic:

 if input data are combined. For example, in the VoicePaint or
NoteBook applications, the user enters a single command using two modalities
(speech and mouse) in parallel; the input data are combined to be interpreted
by the system.

Systems allowing modalities to be combined seem to be most promising. We
classify VoicePaint and Notebook as synergic multimodal applications, because of
their closeness to the synergic point.

3. ARCHITECTURE

Both VoicePaint and NoteBook use a similar software architecture model. This
model is based on the Seeheim model which makes a clear distinction between the
core of the application and its user interface. Some of its components are common
with those of the Arch model [UIMS 91] and the PAC-Amodeus model [Nigay 91b].
The major components are briefly described below and illustrated in the Figure 2.

■

The

Functional Core

 (FC) implements domain specific concepts in a
presentation independent way.

■

The

Dialogue Controller

 (DC) is the keystone of our model. It has the
responsibility for task-level sequencing. Each task of the end-user corresponds
to a thread of dialogue. This observation suggests a multiagent decomposition:
an agent or collection of agents can be associated to each thread of dialogue.

■

The

 Interface with the Functional Core

 (IFC) maps conceptual objects from the
Dialogue Controller to domain objects from the Functional Core and back.

Supported use
of the modalities

Level of input data interpretation
or output data generation

Combined

Independent

Sequential Parallel

Alternate Synergic

Exclusive Concurrent

*
*

VoicePaint

NoteBook

■

The

Presentation Techniques Component

 (PTC) defines two multivalued
mapping functions between Presentation Objects and Interaction Objects.
The PTC describes the presentation (i.e. image of the system as defined by
D. Norman [Norman 86]). It implements the perceivable behaviour of the appli-
cation for outputs as well as input commands. It is at this level of abstraction
only that the interaction media is taken into account.

■

The

Low Level Interaction Component

 (LLIC) denotes the underlying platform,
both software and hardware. It supports the physical interaction with the user.
It manages (time-stamps and queues) end-user's events (or stimuli) from
different media and has the responsibility for their lexical analysis.
Some of the low-level events are not transmitted to the Presentation Technique
Component. Indeed, lexical tasks such as resizing a window, are locally per-
formed by the Low Level Interaction Component. In addition, in the case of
spoken-utterances, this component could include mechanisms for confirmation
allowing the user to intercept a recognition.

The multiagent architecture of the Dialogue Controller offers an interesting
conceptual framework. It provides a pathway to structure an interactive software.
Its non sequential, hierarchical and distributed features make it particularly well
suited to multimodal interfaces. Each communication mode can be represented
with as many event messages sent to the agents as necessary. Their processing
can be done in parallel or in synergy.

Figure 2. Software architecture

To sum up, let’s see how the system reacts to a user action. Input events from
the user are going into the Low-Level Interaction Component. They are then
transformed in terms of interaction objects, and handled to the Presentation Tech-
niques Component, which may transform them in presentation objects. Those

Presentation Techniques
Component

Interface with the
Functional Core

Functional Core
Low Level

Interaction
Component

Conceptual
Objects

Presentation
Objects

Domain Objects Interaction Objects

Dialogue Controller

objects are then processed by the Dialogue Controller. The Controller eventually
creates Conceptual Objects and passes them to the Interface with the Functional
Core. This “domain adaptor” then transforms them to Domain Objects which are
then processed by the Functional Core. Other Domain Objects are created, and
follow the reverse path, up-to, if needed the Low-Level Interaction Component. At
each stage, objects are processed locally and discarded if possible. That is, the
Functional Core will probably never deal with each and every key presses, but
rather with string of characters, or still more abstract objects.

Inside this framework, fusion of “event” objects can take place at several levels.

4. LOCALISATION OF FUSION

As non-multimodal systems transform each object (from interaction objects,
presentation objects, conceptual objects, domain objects and back), multimodal
systems too, perform this transformation. But their task may be more complex —
especially for synergic systems. They may have to fuse (“combine”) several differ-
ent objects, eventually of different kind, to go to the next step. We have identified
three levels of fusion:

■

Semantic fusion:

 The Dialogue Controller is a good place for combining the
results of two commands. To fuse these results we use a dedicated agent
dispatching the results to other agents. This is the strategy used in Voice Paint.

■

Syntactic fusion:

 The hierarchy of Dialogue Controller agents is also a good
place to implement multimodal interactions where multimodal events can be
combined into a higher level to complete a command. It is often the case that
the specification of a command involves user actions distributed over multiple
agents. These user's actions could be performed using different modalities. To
combine the distributed multimodal actions into a higher abstraction
(command level), we use a dedicated agent, father of the agents which receives
the elementary actions. This strategy has been used in Notebook.

■

Lexical fusion:

 The lexical combination is performed by the Low-Level
Interaction Component. For example, depressing the shift key while clicking
allows multiple selections.

We have identified three levels here. However, we feel that some fusions may
be done at the Presentation Techniques Component level, if realistic feedback or
efficiency is a concern. Because we performed the fusion at the Dialogue Control-
ler level in the two systems we built, we are now going to detail how the fusion is
done at the Dialogue Controller level.

5. FUSION AT THE DIALOGUE CONTROLLER LEVEL

In our systems, multimodal fusion is implicit. We do not do complex syntax
analysis, but let our agent architecture do the work for us.

To do this, we use:

■

in VoicePaint, a lightweight multitasking kernel built into HIK, our application
framework, to allow the input of several media at the same time,

■

in Notebook, two processes are created, one for speech input and one managing
graphic behaviour.
As a result, for example, while a mouse command is processed, voice messages

can be acquired, recognized, and sent to the appropriate agents. We chose to have
the fusion of events done by a supervisor agent.

Synchronous data input allows synergic input, but is not required to the fusion,
the hierarchy of agents is enough. No explicit combination has to be specified
either in the mouse or voice handler.

Although our approach does not allow complex, media dependent analysis (of
the kind of Put That There [Bolt 80]), it is an easy way to allow multimodal input.
It is expandable, and significantly enhance otherwise monomodal application.
One could not do what is possible with VoicePaint without multimodal input.

To be able to fuse modalities, an important question is how to represent the ele-
ments of fusion.

6. ABSTRACT COMMON REPRESENTATION

Fusion is facilitated if it takes place among uniform objects. A common repre-
sentation of data might be used to represent data to be fused as well as the result
of the fusion. The following examples illustrate the use of common representa-
tion.

6.1. Common representation for fusion

VoicePaint and Notebook use a common representation for multimodal fusion.
Because of the level of fusion (inside the Dialogue Controller), we use abstract
command representation. Indeed, the Dialogue Controller needs only to know the
command and its parameters. Incomplete commands and synergic multimodal
commands can be specified.

6.2. Common representation as a result of fusion

Other programmes, such as ICPDraw [Wretö 89], use frame as a common
media-independent abstract representation of commands. Each attribute of the
frame may be specified using different media.

The MMI2 Esprit project defines a structure called Common Meaning Repre-
sentation to communicate between its sub-systems. This Prolog-based represen-
tation is oriented towards natural language representation. It is also used as a
common representation for fusion.

6.3. Media-dependent data

Whenever possible, media-independent commands should be used. They give a
greater flexibility to the user by allowing him to choose a specific modality without
increasing the complexity of the Dialogue Controller. Media fusion is also easier,
the interface component being in charge of filling an appropriate abstract com-
mand structure.

Media dependent data however, should not always be discarded. There are
some times when a direct access to the data is needed, for example because the
processing is data dependent. At least a mention of which media were used to
specify the abstract command should be available, so that the results of this com-
mand be issued using the most appropriate output media.

None of the reviewed mechanisms allow for the smooth handling of media need-
ing continuous data input, such as stylus, voice or mouse, except for the command
mechanism of MacApp which defines a class of “tracking commands” to specifi-
cally track the mouse.

7. CONCLUSION

We successfully used our software architecture model to build two multimodal
systems (VoicePaint and Notebook). However, we feel the urge to study a more
sophisticated abstract common representation mechanism providing:

■

Media-independent command representation

■

Indication of which media was used, and the initial media-dependent data

■

Incomplete commands management

■

Continuous data capture (speech, pen strokes)

In our next step, we will study the consequences the abstract common represen-
tation will have on software architectures.

8. ACKNOWLEDGEMENT

We wish to thank members of the multimodal working group of the IHM ‘91
conference whose thoughts served as a basis for this paper.

9. REFERENCES

[Bolt 80] R. A. Bolt, “«Put that there»: Voice and Gesture at the Graphics
Interface”, ACM

 SIGGRAPH 1980

, 1980, 226-270.

[Gourdol 89] A. P.J. Gourdol,

 Human Interface Kernel: Developer’s Guide

, 1989

[Gourdol 91] A. P.J. Gourdol,

 Architecture des Interfaces Homme-Machine
Multimodales

, Master’s Thesis, Université Joseph Fourier, 1991.

[Hauptmann 89]

A. G. Hauptmann, “Speech and Gestures for Graphic Image
Manipulation”, CHI

 ‘89 Proceedings

, 1989, 241-245.

[Lunatti 91] J.-M. Lunatti, A. I. Rudnicky,

Spoken Language interfaces: The OM
system

. In proceedings of CHI'91 Conference, New orleans, April 27-May 2, 1991,
pp. 453,454.

[Nigay 91a] L. M.B. Nigay,

A case Study of Software Architecture for Multimodal
Interactive System: a voice-enabled graphic notebook

, Technical Report, October
1991.

[Nigay 91b] L. M.B. Nigay, J. Coutaz,

Building User Interfaces: A Cookbook for
Organizing Software Agents

. ESPRIT Basic Research Action 3066 AMODEUS
(Assimilating MOdels of DEsigners, Users and Systems), 1991.

[Norman 86] D. A. Norman, S.W. draper,

User Centred System Design

. Lawrence
Erlbaum Associates Publ., 1986.

[UIMS 91] The UIMS Workshop Tool Developers A Metamodel for the Runtime
Architecture of an Interactive System, 1991.

[Wretö 89] J. Wretö, J. Caelen,

 ICPDraw, Rapport final du projet ESPRIT
MULTIWORKS n° 2105,

 1989.

