
TOWARDS AUTOMATIC EVALUATION
OF MULTIMODAL USER INTERFACES

Sandrine Balbo, Joëlle Coutaz, Daniel Salber

Laboratoire de Génie Informatique, IMAG
B.P. 53X, 38041 Grenoble Cedex, France

Tel. +33 76 51 48 54, e-mail: balbo@imag.fr, joelle@imag.fr, salber@imag.fr

CONTACT ADDRESS OF MAIN AUTHOR
Joëlle Coutaz
Laboratoire de Génie Informatique, IMAG
B.P. 53X, 38041 Grenoble Cedex
Tel. +33 76 51 48 54
Fax +33 76 44 66 75
e-mail: joelle@imag.fr

ABSTRACT
The evaluation of the usability and the learnability of a computer system may be performed with predictive
models during the design phase. It may be done on the executable code as well by observing the end user
in action. In this case, data collected in vivo must be processed. Our goal is to provide a software support
for performing this difficult task.

This article presents an early analysis and experience towards the automatic evaluation of multimodal user
interfaces. With this end in view, a generic Wizard of Oz platform has been designed to allow the
observation and the automatic recording of subjects’behavior while interacting with a multimodal interface.
We then show how recorded data can be analyzed to detect behavioral patterns, and how deviations of
such patterns from a data flow-oriented task model can be exploited by a software usability critic.

KEYWORDS
Capture of behavioral data, multimodal user interface, Wizard of Oz, user interface evaluation techniques.

TOWARDS AUTOMATIC EVALUATION
OF MULTIMODAL USER INTERFACES

Sandrine Balbo, Joëlle Coutaz, Daniel Salber

Laboratoire de Génie Informatique, IMAG
B.P. 53X, 38041 Grenoble Cedex

Tel. +33 76 51 48 54, e-mail: balbo@imag.fr, joelle@imag.fr, salber@imag.fr

ABSTRACT
The evaluation of the usability and the learnability of a
computer system may be performed with predictive models
during the design phase. It may be done on the executable
code as well by observing the user in action. In this case,
data collected in vivo must be processed. Our goal is to
provide a software support for performing this difficult
task.

This article presents an early analysis and experience
towards the automatic evaluation of multimodal user
interfaces. With this end in view, a generic Wizard of Oz
platform has been designed to allow the observation and the
automatic recording of subjects’behavior while interacting
with a multimodal interface. We then show how recorded
data can be analyzed to detect behavioral patterns, and how
deviations of such patterns from a data flow-oriented task
model can be exploited by a software usability critic.

KEYWORDS
Capture of behavioral data, multimodal user interface,
Wizard of Oz, user interface evaluation techniques.

INTRODUCTION
The development of interactive systems is an iterative
process composed of three steps: design, construction and
evaluation. Software tools such as interaction toolkits and
UIMS technology, or software architecture models such as
PAC [7] and the Abstraction-Link-View paradigm [14],
have been developed to facilitate the construction of
graphical user interfaces (GUI). Although the construction
of user interfaces has been widely addressed by the software
engineering community, little attention has been paid to
software support for user interface design and evaluation.

Parallel to the development of graphical user interfaces,
natural language processing, computer vision, and gesture
analysis have made significant progress. Clearly, the
 combination of medias and modalities open a complete
new world of experience but our current understanding on
how to design, build and evaluate such interactive systems
is very primitive.

This article presents our early analysis and experience with
the automatic evaluation of multimodal interfaces. Our
goal is to provide designers with a Wizard of Oz
multimodal software platform flexible enough to support
the evaluation of multiple interactive systems. The next
two sections define the problem space: first, the main
streams for user interface evaluation are presented and our
own approach is localized in this framework. Then, a
taxonomy for the study of multimodal interfaces is
presented. The last two sections are dedicated to our own
solution to the problem: the description of the platform and
a first experience with automatic evaluation.

AN OVERVIEW OF EVALUATION TECHNIQUES
As shown in figure 1, evaluation techniques for interactive
systems are divided in two broad categories.

Evaluation techniques

Predictive
models&techniques

Experimental
techniques

HCI-based
heuristics

Theory-based
models

Wizard of Oz
platforms

Mockups Prototypes
GOMS
CCT

KRI
Cognitive

walktthrough

Figure 1: An overview of evaluation techniques for
interactive systems.

Predictive methods are applicable during the design phase.
They do not require any system implementation, nor do
they need effective users. At the opposite, experimental
techniques rely on the existence of a physical apparatus
ranging from mock-ups of the real system up to the full
implementation of a running prototype.

Predictive techniques
In general, predictive techniques are theory-based. For
example, GOMS [5] and its related models such as the
Cognitive Complexity Theory (CCT) [15], rely on an
explicit hierarchical decomposition of the user’s tasks. This
static representation is supposed to model the user’s plan
for accomplishing a particular task. The genuine GOMS is
a pure analytic model of errorless performance: it is able to
predict the time required to accomplish a task without
errors. Recently, GOMS has been extended to predict errors
due to cognitive overload [16]. CCT, on the other hand, is
useful for comparing several designs in terms of
learnability and knowledge transfer.

At the opposite of GOMS and CCT, PUM builds a
dynamic model of the user’s plan. It predicts errors through
a programmable cognitive architecture [27]. The designer
specifies the knowledge that the user needs to accomplish a
particular task. This description, which includes domain
knowledge as well as knowledge about the user interface, is
compiled in terms of rules. These rules represent the user’s
ability to accomplish this particular task with that
particular user interface. Based on this knowledge, the
PUM cognitive architecture tries to elaborate a plan. If no
plan can be generated, then the designer is notified of a
potential usability or learnability problem.

Predictive evaluation techniques may also be based on HCI
heuristics. Typically, the assessor looks for properties in
the user interface design that, he knows from experience,
lead to usability or learnability problems. Such knowledge,
exemplified by the Smith & Mosier’s work, may be
embedded in an expert system such as KRI [18]. KRI is
able to detect anomalies from a formal description of the
user interface. However, only the lexical and syntactical
levels of the interaction are covered by the critic. Task
modelling and any high level cognitive activity are
discarded.

Assessing a design through HCI heuristics is a difficult
task. The task-based “cognitive walkthrough” method
proposed by Lewis et al. provides a useful framework for
extracting evaluation guidance from a formal theory of
human-computer interaction [17]. It consists of “a list of
theoretically motivated questions about the system” such as
“how will user access description of action?” or “how will
user associate description to action?”.

In summary, the main benefit from predictive models and
techniques is that they allow the evaluation of user
interfaces at the design stage. A design can be improved
before a costly implementation takes place. On the other

hand, specifying data to a predictive model may be as time
consuming as the implementation per se. In addition,
predictions made by theoretical models are based on
hypotheses, not on real data. As demonstrated by Pollier
[22] as well as by Nielsen et al. [21], heuristic evaluation
is hard. At least three assessors are necessary to discover a
reasonable number of usability problems (i.e., half of the
problems at best!)

Experimental techniques
Experimental techniques and methods deal with real data
observed from real users accomplishing real tasks with a
physical artefact. This artefact may include paper scenarios,
mock-ups, computer system prototypes, or Wizard of Oz
(WOz) platforms.

With a WOz setting, “designers can illustrate how users
will interact with yet-to-build software” [19]. In general,
MOz experiments have been applied to natural language
interfaces only. Corpus collected in vivo would be used to
tune the linguistic parameters of the system, and thus
would improve the robustness of the interaction [9].

In general, behavioral data from MOz experiments, are
tape-recorded. As a result, they must be retrieved and
interpreted by hand. This is a time consuming task which
requires expertise and patience. However, recent MOz
platforms are able to capture and mix digitized and
analogical behavioral data [12]. By doing so, automatic
tools can be developed to support the evaluation process.
However, to our knowledge, none of the MOz platforms
has tackled the problem of multimodal interfaces.

In summary, analysis from experimental methods are
performed on real data, not on uncertain hypothetical
values. This benefit is counterbalanced by the volume of
behavioral data to process and by the difficulty to identify
the appropriate parameters for a particular experiment. We
believe that a MOz computer platform which automatically
captures selected behavioral data, provides a good basis for
the development of evaluation and design tools. In addition,
a MOz computer platform to study multimodal interaction
is certainly a promising enterprise. Our approach to this
problem is presented in the rest of the article.

A TAXONOMY FOR MULTIMODAL USER
INTERFACES
In psychology, a modality refers to a human sensory
channel such as vision, audition and touch. In the
theoretical framework of the Model Human Processor [5] as
well as in ICS [3], these channels are modelled as
specialized processors. Whereas a modality denotes a type
of human communication channel, a media such as a
computer system, is an artefact that conveys information
by triggering one or several human communication
channels. According to these definitions, how can a user
interface be qualified as being multimodal? The ICS model
can provide us with a useful starting point.

Multimodal User Interface: a Definition
In ICS, the human information processing system is
subdivided into a set of specialized subsystems. The
sensory subsystems transform sense data into specific
mental codes that represent the structure and content of
incoming data. These representations are then handled by
subsystems specialized in the processing of higher-level
representations: the morphonolexical subsystem for
processing the surface structure of language, the object
subsystem for processing visuospatial structures, and the
propositionnal and implicational subsystems for more
abstract and conceptual representations. The output of these
higher-level subsystems are directed to the effector
subsystems (articulatory and limb).

Using a similar process, a multimodal system is able to
represent and manipulate information at multiple levels of
abstraction. This transformation process makes possible
the automatic extraction of meaning from raw input data,
and conversely the production of perceivable information
from symbolic abstract representations1. If “striving for
meaning” denotes multimodal user interfaces, fusion and
temporal constraints define a classification for multimodal
interaction per se.

Two dimensions for classifying multimodal
interfaces
Fusion covers the combination of different types of
modalities. The absence of fusion is called exclusiveness,
while the existence of fusion forms a synergy. Thus, a
multimodal user interface is
• exclusive if input (or output) expressions are built up
from one modality only,
• synergic if input (or output) expressions are built up from
multiple modalities.

Figure 2 illustrates the discussion.

put that click there

destroy O window click destroy O
window click

synergy

exclusi
-veness

sequentiality concurrency

FUSION

+ Put that there
clickclick

TEMPORAL
CONSTRAINTS

Figure 2. Examples of input expressions in multimodal
user interfaces. Text appearing on one line denotes
sequentiality, while text appearing on 2 lines denotes
concurrency. Italic expresses mouse gesture. Normal text
indicates spoken words.

1At the opposite of multimodal systems, multimedia
systems 1) do not elaborate abstract concepts automatically
(these are encoded manually as meta-information), and 2)
they do not transform the information per se but apply
encapsulation on it.

As an example of exclusive multimodal user interface, we
can imagine the situation where, to open a window, the
user can choose among double-clicking an icon or say
"open window". One can observe the redundancy of the
ways for specifying input expressions but, at a given time,
an input expression uses one modality only. As an
example of synergic multimodal system, the user of a
graphics editor can say put that there while pointing at the
object to be moved and showing the location of the
destination with the mouse or a data glove.

Time constraints express the possibility for the user and
the system to build exclusive or synergic expressions
sequentially or concurrently. Sequentiality or concurrency
may be studied at the input/output expression level as well
as at finer grain, such as the physical actions involved in
the specification of expressions. Sequentiality in synergic
multimodality implies that modalities be interleaved during
the construction of an expression. If we consider the put
that there example, sequentiality would require the user to
say put that followed by a mouse click to denote that. He
would then say there and click a second time to indicate the
destination. Although not desirable, sequentiality may be
imposed for technical reasons. In a concurrent synergic
multimodal system, the user would utter the sentence and
perform the mouse clicks in a “natural” way, i.e., without
necessarily interleaving modalities.

In summary, the two dimensions, fusion and temporal
constraints, define a problem space which, as shown in the
next paragraph, provides a useful framework for reasoning
about multimodality.

Benefits from the classification
As discussed in [8, 10], one can study the implications of
fusion and temporal constraints on software architectures.
Bourguet and Caelen in [4] exploit the framework for the
interpretation of multimodal expressions in a dialogue
model.

For example, in a graphic editor supporting concurrency,
consider the vocal command rotate the triangles combined
with the selection of a set of triangles with the mouse.
Depending on the presence of fusion or not, the
interpretation of the vocal command may have different
effects:
• In an exclusive multimodal user interface, the vocal and
gesture commands are independent. Then, rotate the
triangles can be interpreted in two ways: a) rotation of the
triangles selected in a previous command (i.e., the pronoun
the acts as an anaphoric reference); b) rotation of all of the
triangles in the picture if no triangle has been previously
selected.

• In a synergic multimodal user interface, the vocal and
gesture commands can be coupled. Thus, in addition to
interpretations a) and b), rotate the triangles allows a third
interpretation c) where the acts as a deictic related to the
concurrent gesture. The choice between the 3

interpretations relies heavily on the dialogue model used to
drive the interface. In particular, if parallelism at the
interface prevails, then solution c is selected. If
sequentiality dominates, then solutions b and c are good
candidates. In addition, if vocal modality is privileged, then
c prevails over b.

Psychological theories and human factor principles claim
that a dialogue model should consider the task domain, the
task and the user. Although some of their recommendations
are useful for GUI technology, they are not directly
extensible to multimodal user interfaces. In the absence of
hard-core theory, we opt for the Wizard of Oz experimental
approach.

NEIMO, A MULTIMODAL WIZARD OF OZ
PLATFORM

Objectives
The goal of Neimo is to provide designers with a “Wizard
of Oz” environment to observe and evaluate how users
interact with multimodal interfaces. Wizards are used to
supplement missing functions such as recognizers or
generators for a particular modality.

Modalities studied with the platform include graphics, oral
communication, and gesture. Gesture covers facial
expression and 2-D pen scribbling. We consider that the
redundancy provided by facial expression can be used to
disambiguate the interpretation of end-user’s behavior.

An essential requirement for such an environment is
flexibility. Neimo must support any number of wizards,
any number of modalities, and any type of application
whose source code is available2. In addition, for a given
application and a given set of modalities, it should allow
multiple experiments with fusion and time constraints.

Hardware configuration
Figure 3 illustrates a typical hardware configuration for the
Neimo platform. It includes one workstation for the user
(i.e., the subject) and several workstations for wizards. All
of the workstations are Apple Quadras.

Camera

wizards user

Microphone

Pen

Figure 3: Hardware configuration of the Neimo platform.

The user’s workstation is equipped with a pen computer, a
microphone and a speaker to study pen gesture coupled to
speech and facial expression. Voice Navigator, a word-

2An application is a functional core that implements task
domain concepts.

Markov network-based pattern matching system, is used as
the speech recognizer. Because of its poor performance with
regard to “naturalness”, we intend to replace Voice
Navigator with a wizard and evaluate the behavioral
differences. The pen gesture recognizer is based on
Rubine’s work [23].

A CCD camera is focussed on the user’s face and connected
to a video acquisition board installed in one of the wizards’
workstation. Thus, it is possible for that wizard to observe
an image of the user’s face digitized in real time (2 to 3
images per second).

Wizards are classified in two categories: the functional
wizards and the modal wizards. A functional wizard
accomplishes the task domain dependent services that are
not implemented in the application. A modal wizard
replaces or complements software components specialized
in the processing of a particular modality or in the fusion
of multiple modalities. For example, when Voice
Navigator is turned off, a speech modal wizard comes into
play. Similarly, a modal vision wizard is used to interpret
facial expressions3 [26].

Software organisation and services
In order to satisfy the flexibility requirement, the Neimo
platform is organized around a minimal communication
kernel, NeimoCom, interfaced by libraries.

NeimoCom

User
Client

Wizard
ClientsNeim

Lib
ra

ry

Neimo
Library

Hist
or

y

Neimo
Library

Figure 4: The software organisation of the Neimo
platform. Dimmed areas denote common services and white
areas, specific components.

As shown in Figure 4, NeimoCom acts as a
communication server for transferring messages between
workstations, and serves as a message recorder in history
files. Each workstation runs a set of client functions linked
to a NeimoCom library. These functions are not provided
by the kernel but are developed for specific purpose. For
example, the client functions of the speech wizard
workstation support the wizard's task. In particular, a list
of prerecorded answers is proposed to the wizard in order to
alleviate his cognitive load as well as to guarantee a
consistent behavior with regard to the user.

3Turk’s face recognition system developed at MIT is being
adapted for the Quadra environment.

A Neimo library provides client functions with the
following main services:
• open and close a connection. A wizard workstation can
dynamically open or close a connection during a session.

• declare new types of message or redefine previously
defined types with additional fields and/or suppression of
obsolete fields. A message type is declared as a data
structure with named typed fields. Since data fields are
named, their order is not significant. By so doing, old
clients can be modified or new clients added to the
environment without jeopardizing previous settings. For
example, a color field may be added to the original typeface
which was first designed for black and white pictures of
faces.

• dynamically subscribe to a set of message types. This
service allows clients to express their interest for a category
of messages. For example, the vision wizard client
subscribes to the face type to receive images of the user’s
face in order to be able to process and display them onto
the wizard’s screen. In addition, the dynamicity of the
subscription allows wizards to change roles on the fly.

• send and receive messages synchronously. Messages are
time-stamped by NeimoCom which maintains the
universal time.

• open, close history files and record messages in an opened
history file4. In addition to navigation functions such as go
to the last record of history file h, or select record i from
history file h, clients can define views. A view acts as a
filter on a history file. It includes a start and a stop date to
identify the temporal window of interest, the origin (i.e.,
wizard VS user) as a selector of the source of the recorded
messages, and a list of the message types of interest (for
example face, mouse and speech).

A more detailed description of the run time kernel is
available in [1]. To summarize, the originality of the
Neimo kernel is three-fold:
1) messages from multiple medias are processed in a
uniform and integrated way,

2) message types are not imposed by the system. Instead,
their level of abstraction is client defined. It is then
possible to record information from low level events such
as mouse clicks up to high level commands;

3) messages are recorded on request in dedicated files.
Messages can be subsequently retrieved either directly
according to their record sequencing number, or indirectly
through the notion of views. Views allow client programs
to extract messages through temporal windows on a set of
message types. A user interface critic is one of such
potential clients.

4History files format takes advantage of QuickTime which
supports time-based data from different medias.

In addition to the run time kernel, a minimal user interface
common to all of the wizards has been designed. This user
interface allows a wizard to:
• set up the configuration for the session: which user’s
workstation to observe, which message types to receive,
etc.;

• control message recording and message load during the
session;

• observe the user’s behavior: reception of the user’s
utterances, message sequence received from the user,
replication of the user’s screen as well as the user’s mouse
movements5.

The Neimo platform is under development using MacApp
in the MPW environment. Although we have not yet been
able to make full-fledged experiments with Neimo, an early
experiment of message recording and interpretation under X
window [2] will be re-implemented in the Neimo
environment. The model developed in this experiment is
described in the next section.

OUR APPROACH TO AUTOMATIC EVALUATION
Our automatic evaluation of user interfaces is a four step
process: 1) definition of a task model, 2) acquisition of
behavioral data, 3) identification of behavioral patterns, and
4) critic per se.

A task model defines the optimal way of performing the
task in a particular context for a particular domain. It is a
behavioral reference model. Recorded data, as those captured
by Neimo, reflect the effective behavior of the user
performing a task in a quasi-realistic setting. As in the
MRP technique [25]), behavioral patterns are repeated user
actions that may reveal usability problems. The critic per
se combines general heuristic HCI knowledge with data
specific to the case at hand: it detects deviations of the
behavioral patterns from the reference task model. These
four aspects are developed in the following paragraphs.

The task model
The definition of a task model depends on its end use.

In the design stage, the task model expresses the logical
use of the system. It structures the work space in terms of
tasks and subtasks showing the relationships between
clusters of logically connected tasks. As in GOMS and
CLG [20], the representation is a task hierarchy whose
leaves denote the tasks that are conceptually indivisible.
This is the conceptual task model.

When considering the running prototype, the task model
aims at specifying the way the system functions. At the
opposite of the conceptual task model, it specifies the way
the user should perform the task with the real system. It

5In the first version of the system, this last function is
implemented via Timbuktu.

does not necessarily describe a manner that is convenient
for the user. Ideally, the conceptual task model and the
effective task model should be isomorphic. In particular,
the elementary tasks of the conceptual model should
correspond to commands in the effective task model.

Although mapping elementary tasks to commands is
straightforward, the correspondence for compound tasks is
difficult to formalize. This situation results mainly from
the discrepancy between the points of view adopted at the
design and implementation steps. In the design phase,
attention is focussed on the domain. As a result, syntactic
tasks such as window manipulations which, by definition
are domain independent, are not considered. Clearly, our
evaluation technique, based on the acquisition of real data,
speaks in favor of an effective task model: the sequence
tree.

A sequence tree represents the sequence of possible
elementary tasks. An elementary task is indivisible and
modifies the system state. A node denotes an elementary
task. As shown in figure 5, a node may be decorated with
preconditions P. For example, to open a file from the
Macintosh desktop, the folder which contains the file must
be opened.

A

B C

D

P: folder opened

Figure 5: The sequence tree model.

Edges express ordering between elementary tasks. If A and

B denote two elementary tasks, then A B means that A
must be executed before B, and A cannot be executed again.
In A B, A must be executed before B but A may be
executed again in the future. If a node has multiple
siblings, then the user may choose any one of them and
switch freely between the subtrees. This property allows
for the expression of interleaving between tasks.

In summary, a sequence tree shows the possible migration
of the user through an organized and constraint space of
elementary tasks. In turn, elementary tasks are expressed in
terms of the physical actions that the user can perform with
input medias. A notation like UAN [13] can be used to
specify the correspondence.

Collecting behavioral data
Recorded data correspond to the physical actions of the
user.

In an X Window environment, actions such as mouse
clicks and key presses, are modelled as events. We have
recorded them in a history file with additional information
such as the name of the elementary task to which it
belongs. In a Neimo environment, actions are conveyed
through messages and additional actions such as facial

expressions and meta-comments, can be interpreted by a
wizard and recorded.

Data has been recorded for a set of simple tasks selected
from a complex problem space: the design of user
interfaces for everyday cars. This design environment,
Compo, is similar to an authoring system like HyperCard,
where scripts are expressed with an iconic language [6].

Behavioral patterns
The analysis of the recorded data within Compo led us to
identify three classes of interesting behavioral patterns:
direction shift, action repetition and action cancellation as
part of syntactic tasks.

A direction shift occurs when the user stops following a
downward path in the sequence tree. For example, although
it is useless to do so, he may systematically select an icon
file in the Macintosh desktop before invoking the page
setup item in the file menu.

Action repetition as part of syntactic tasks cover actions
that do not modify the functional core but concern the user
interface portion only. Typically, we have observed
systematic resizing, or iconification, or scrolling tasks on
newly opened windows.

Action cancellation as part of syntactic tasks refer to
closing newly opened windows or navigating through
menus without selecting any item.

The critic
Behavioral pattern types are then related to usability
problems based on human factor and psychological
principles. These are numerous, inflationary or even
contradictory. As a first step experience, we have used the
simple taxonomy provided by Scapin [24] with the notions
of compatibility, homogeneity, concision, feedback
pertinence, explicit control, cognitive load, and error
management.

Rules have been encoded in the critic to point out user
interface flaws through behavioral patterns. For example,
the systematic occurrence of a direction shift at a particular
node in the sequence tree expresses a cognitive dead-end.
The interface does not lead the user to build the appropriate
model. There is an incompatibility between the effective
task model and the user’s mental model. In the same way,
systematic iconification of newly opened window may
correspond to a messy screen or expresses the irrelevance of
the information contained in the window.

CONCLUSION
In summary, we have developed an early experience with
the automatic evaluation of interfaces using a simple
apparatus. From low level captured data (i.e., user’s mouse
clicks and key presses), from a task model, and from
general HCI heuristic knowledge, we have been able to
detect anomalies for a graphical user interface. This
technique needs to be extended to multimodal interfaces.

With this end in view, we have designed Neimo, a generic
platform, able to register a wide range of behavioral data in
an integrated way. These data may result either from the
automatic interpretation of the user’s behavior by the
system, or from on the fly interpretation by human
wizards. With such a tool, experimenters should be able to
build rich but focussed history files. As an additional
benefit from history files, we expect to devise user models
applicable to the design of multimodal interfaces.

ACKNOWLEDGEMENTS
This article was influenced by stimulating discussions with
our colleagues of the pole IHM-Multimodal of PRC
Communication Homme-Machine including Jean Caelen
(ICP, Grenoble) and Claude Valot (CERMA). Gilles
Ambone and Bernard Noz deserve special thanks for their
active participation in the design and implementation of the
Neimo platform.

REFERENCES
1. G. Ambone, B. Noz, D. Salber, “Projet Neimo,

Spécifications externes”, rapport interne, équipe IHM,
LGI-IMAG, 1992.

2. S. Balbo, J. Coutaz, “Un pas vers l’évaluation
automatique des interfaces homme-machine”, to appear
in the ERGO-IA’92 proceedings, Biarritz, 1992.

3. P.J. Barnard, “Cognitive Resources and the Learning
of Humnan-Computer Dialogs”, in Interfacing
Thought, Cognitive Aspects of Human-Computer
Interaction, J.M. Carroll Ed., MIT Press Publ., 1987,
pp.112-158

4. M.L. Bourguet & J. Caelen, "Interfaces Homme-
Machine Multimodales: Gestion des Evénements et
Représentation des Informations", to appear in the
ERGO-IA’92 proceedings, Biarritz, 1992.

5. S.K. Card, T.P. Moran & A. Newell, “The
psychology of Human Computer Interaction”,
Lawrence Erlbaum Associates, 1983

6. A. Chabert, “La programmation visuelle”, Rapport de
DEA d’Informatique, Institut National Polytechnique
de Grenoble, Juin 1991

7. J. Coutaz, “PAC: an Implementation Model for
Dialog Design”, Proceedings of the Interact'87
conference, Stuttgart, H-J. Bullinger, B. Shackel ed.,
North Holland, september 1987, pp. 431-436.

8. J. Coutaz, “Multimedia and Multimodal User
Interfaces: A Taxonomy for Software Engineering
Research Issues”, St Petersburg HCI Workshop,
August, 1992.

9 . Nils Dahlbäck and Arne Jönsson: "Empirical
studies of discourse representations for
natural language interfaces", Fourth

Conference of the European Chapter of the
ACL Proceedings, 1989, pp. 291-298.

10. A. Gourdol, L. Nigay, D. Salber, J. Coutaz, “Two
cases studies of software architecture for multimodal
interactive systems: VoicePaint and a Voice enabled
graphical notebook”, IFIP’92 Congress, Oct, 1992,
Madrid.

11. Dan Diaper: "The Wizard's Apprentice: A
Program to Help Analyse Natural Languages
Dialogues", proceedings of the fifth
conference of the British Computer Society,
Human-Computer Interaction Specialist
Group, University of Nottingham, 5-8
September 1989, pp. 231-243.

12 . M.L. Hammontree, J.J. Hendrickson,
B.W. Hensley, “Integrated Data Capture and
Analysis Tools for Research and Testing on
Graphical User Interfaces”, in the CHI’92
Conference Proceedings, ACM Press Publ.,
1992, pp. 431-432

13. R. Hartson, P.D. Gray, “Temporal Aspects of Tasks
in the User Action Notation”, Human-Computer
Interaction, Laurence Erlbaum, vol. 7, No 1, pp. 1-45,
1992

14. R. Hill, “The Abstraction-Link-View paradigm: using
constraints to connect user interfaces to applications”,
in Proceedings of CHI’92, ACM Press, May 1992,
pp. 335-342

15. D. Kieras, P.G. Polson “An Approach to the Formal
Analysis of User Complexity”, International Journal
of Man-Machine Studies, 22, 1985, pp. 365-394

16. F.J. Lerch, M.M. Mantei, J.R. Olson, “Skilled
financial planning: The Cost of Translating Ideas into
Actions”, in Proceedings of CHI’89, ACM Press,
1989, pp. 121-126.

17. C. Lewis, P. Polson, C. Wharton, J. Rieman,
“Testing a Walkthrough Methodology for Theory-
Based Design of Walk-Up-and-Use Interfaces, in
Proceedings of CHI’90, ACM Press, 1990, pp. 235-
241

18. J. Löwgren & T. Nordqvist, “A Knowledge-Based Tool
for User Interface Evaluation and its Integration in a
UIMS”, Human-Computer Interaction-INTERACT'90,
pp. 395-400

19. Wendy E. Mackay: "Video: Data for
Studying Human-Computer Interaction", CHI
'88, 1988, pp. 133-137.

20. T. Moran, ““The Command Langage Grammar : a
representation for the user interface of interactive
computer systems”, International Journal of Man-
Machine Studies, 15, 1981, pp. 3-50

21. J. Nielsen, R. Molich, “Heuristic Evaluation of User
Interfaces”, in CHI’90 Proceedings, ACM Press Publ.,
1990, pp. 249-256

22. A. Pollier, “Evaluation d’une interface par des
ergonomes : diagnostics et stratégies”, Rapport de
recherche INRIA no 1391, Février 1991

23. D. Rubine, “The automatic recognition of gesture”,
PhD thesis, School of computer Science, Carnegie
Mellon University, CMU-CS-91-202, 1991.

24. D. L. Scapin, “Guide ergonomique de conception des

interfaces homme-machine”, Rapport Technique
INRIA no 77, Octobre 1986

25. A. Sochi & D. Hix, “A study of Computer-Supported
User interface Evaluation Using Maximal Repeating
Patern Analysis”, in Proceedings of the CHI’91
Conference, ACM Press, pp. 301-305, 1991.

26. M. Turk and A. Pentland, “Eigenfaces for
recognition”, Journal of Cognitive Neuroscience, Vol.
3, No. 1, pp. 71-86, 1991.

27. R.M. Young & J. Whittington, “Interim Report on
the Instruction Langage”, AMODEUS Project
Document: Deliverable D5, ESPRIT Basic Research
Action 3066, 11th August 1990

