
Daniel Salber, Colloque sur la multimodalité, Mai 2000, IMAG, Grenoble

CONTEXT-AWARENESS AND MULTIMODALITY

Daniel Salber

IBM T.J. Watson Research Center
30 Saw Mill River Road
Hawthorne, NY 10532, USA
Email : salber@us.ibm.com

Abstract— User interfaces must adapt to the growing dissemination of computing power in our everyday
environment. Computing devices and applications are now used beyond the desktop. Mobile, wearable, and
pervasive computing allow users to integrate computing in the flow of their activities in the physical world. But most
of our systems are still deaf and blind to anything that isn’t explicitly input by the user. By taking the environmental
interaction context into account, context-awareness promises easier interaction and new possibilities for
applications. On the surface, there are many similarities between the needs of multimodal and context-aware
applications. What can we learn from multimodality to build context-aware systems ? What are the common research
problems ? To investigate these issues, we give a brief overview of context-aware systems, including a simple
classification. We describe some abstractions we have found useful to help build context-aware applications. We
then turn to the main problems facing the developers of context-aware systems and relate them to issues
encountered in multimodal systems development.

1. Introduction
A radical shift is taking place in computing. The
typical user is not facing a desktop machine in the
relatively predictable office environment anymore.
Rather, users have to deal with diverse devices,
mobile or fixed, sporting diverse interfaces and used
in diverse environments. In appearance, this
phenomenon is a step towards the realization of Mark
Weiser’s ubiquitous computing paradigm, or "third
wave of computing," where specialized devices
outnumber users [18]. However, many important
pieces necessary to achieve the ubiquitous (or
pervasive) computing vision are not yet in place.
Most notably, interaction paradigms with today’s
devices fail to account for a major difference with the
desktop computing model. Devices are used in
changing environments, yet they do not adapt to
environmental conditions or the changing context.
Although moving away from the desktop brings up a
new variety of usage situations in which an
application may adapt to or take advantage of the
current conditions, computing devices are left
unaware of their surrounding environment.

Context-aware computing aims at making computing
devices aware of their operating environment.
Research prototypes developed in the last decade
have shown the value, as well as the difficulties, of
this approach. We give several examples of exisiting
systems in section 2.2. Among the main difficulties
are a poor understanding of the nature of context,
and the lack of conceptual models and tools to
support the development of context-aware
applications. In this paper, we give a short
introduction to context and context-aware
applications and introduce a model we developed to
help deal with context information. This model was
implemented in the Context Toolkit which is described
in greater detail elsewhere [6, 15]. We then turn to an
analysis of the similarities between multimodal and
context-aware systems and we argue that context-

aware systems actually represent an extension of
multimodal systems to a greater number and variety
of modalities.

2. Context and context-aware
applications
Different disciplines such as linguistics, semantics,
and computing have different definitions of context.
In context-aware computing, a number of definitions
of context have been proposed, usually based on
enumerations of context information that can be
sensed by applications (e.g., location, identity of the
user). We provide a more general definition of context
and then identify classes of context-aware
applications.

2.1. Definition of context

We define context as any environmental information
that is relevant to the interaction between the user
and the application, and that can be sensed by the
application. As a preliminary categorization of context
information, we have identified the following entities
that provide context information, and relevant context
attributes that characterize these entities :

• Providers of context information : people, places,
physical objects, computing objects.

• Context attributes : location, identity, activity,
state.

For example, the location and the identity of the user
(people) are used by a museum tour guide application
to guide her through an exhibit. An office awareness
system keeps track of meetings (activity) occuring in
different rooms (places). A conference assistant
application displays a thumbnail of the speaker’s
current Powerpoint slide (state of a computing object)
on the user’s handheld device [5].

Daniel Salber, Colloque sur la multimodalité, Mai 2000, IMAG, Grenoble

2.2. Classes of context-aware applications

The way context-aware applications make use of
context can be categorized into the three following
classes : presenting information and services,
executing a service, and tagging captured data.

Presenting information and services, refers to
applications that either present context information to
the user, or use context to propose appropriate
selections of actions to the user. There are several
examples of this class of applications in the literature
and in commercially available systems: showing the
user’s location on a map and indicating nearby sites
of interest [1, 4, 7]; presenting a choice of printers
close to the user [16]; or presenting in/out information
for a group of users [15].

Automatically executing a service, describes
applications that trigger a command, or reconfigure
the system on behalf of the user according to context
changes. Examples include: the Teleport system in
which a user’s desktop environment follows her as
she moves from workstation to workstation [17]; car
navigation systems that recompute driving directions
when the user misses a turn [8]; and a recording
whiteboard that senses when an informal and
unscheduled encounter of individuals occurs and
automatically starts recording the ensuing meeting
[2].

Attaching context information for later retrieval, refers
to applications that tag captured data with relevant
context information. For example, a zoology
application tags notes taken by the user with the
location and the time of the observation [13]. The
informal meeting capture system mentioned above
provides an interface to access informal meeting
notes based on who was there, when the meeting
occurred and where the meeting was located. Some
of the more complex examples in this category are
memory augmentation applications such as Forget-
Me-Not [9] and the Remembrance Agent [14].

These categories clarify how applications can use
context. To design and build context-aware
applications, designers and builders need
abstractions to reason about context, unencumbered
by the details of actually acquiring and managing
context information.

3. Software abstractions for context
Designing and building context-aware applications
raises new challenges. The three following issues are
most relevant to this discussion:

1) Context is acquired from unconventional sensors.
Mobile devices for instance may acquire location
information from outdoor GPS receivers or
experimental indoor positioning systems. Tracking the
location of people or detecting their presence at a
given place may require Active Badge devices, floor-
embedded presence sensors or video image
processing.

2) As a consequence, there are no readily reusable
libraries of software components that deal with
context. Even for fairly well understood systems like
GPS receivers, programmers have to deal with
hardware issues (connecting, embedding), as well as

configuration (choosing a coordinates format) and
software issues (parsing the GPS output and
combining location information with other user or
context input).

3) Context must be abstracted to make sense for the
application. GPS receivers provide geographical
coordinates. But tour guide applications would make
better use of higher-level information such as street
or building names. Similarly, Active Badges provide
IDs, which must be abstracted into user names and
locations.

High-level components, such as widgets found in
graphical user interface (GUI) toolkits provide
designers and developers with not only reusable
software components, but also tools for reasoning.
The precise interaction mechanics of a menu or a
button are taken for granted. The designer is only
concerned with the adequation of the widget to the
user’s task and the correct handling by the
application of the information acquired from the
widget. The context widget abstraction aims at
fulfilling a similar role for context information.

3.1. Context widgets

A context widget is a software component that
provides applications with access to context
information from their operating environment. In the
same way GUI widgets insulate applications from
some interaction concerns, context widgets insulate
applications from context acquisition concerns.

Context widgets have a state and a behavior. The
widget state is a set of attributes that can be queried
by applications. For example, a Location widget may
have attributes for the current street address closest
to the user, elevation, and heading. Applications can
also register to be notified of context changes
detected by the widget. The widget triggers callbacks
to the application when changes in the environment
are detected. The Location widget for instance,
provides callbacks to notify the application when the
current street address or heading changes.

A context widget is typically used to encapsulate one
context attribute of one context entity (as described
in section 2.1). Examples include : the location of the
user, the number of people in a given room, the
identity of a visitor stepping into a user’s office, etc.

3.2. Context widgets components

Context widgets are actually made up of several
components (see Figure 1). At the lowest level,
interfacing directly with sensors, are generators . Their
role is to encapsulate a given sensor and hide the
specifics of the particular sensor from the rest of the
widget, to allow easy upgrade or replacement of the
sensor by another providing similar functionality.

Interpreters are in charge of abstracting the data
provided by sensors. They might combine information
from several sensors (e.g., computing an acceleration
vector for a mobile user by collating information from
several accelerometers), and perform elaborate
transformations that require access to external data
(e.g., deriving a street name from geographical
coordinates).

Daniel Salber, Colloque sur la multimodalité, Mai 2000, IMAG, Grenoble

The widget controller is the heart of the widget: it
coordinates the other components and is the entry
point for applications to query the widget state. It
also triggers callbacks for applications that registered
interest in the context information the widget is
handling.

Interpreter 1 Interpreter 2

Gen. 1 Gen. 2 Gen. 3

Widget
Controller

Context Widget

Figure 1 — Anatomy of a context widget. Arrows
represent data flow. Generators 1 through 3 interface
with sensors and feed sensor data to interpreters and
the widget controller. The widget controller maintains
state and triggers callbacks.

3.3. Benefits of context widgets

A context widget is a software component that
provides applications with access to context
information from their operating environment. In the
same way GUI widgets insulate applications from
some presentation concerns, context widgets insulate
applications from context acquisition concerns.

Context widgets provide the following benefits:

• They hide the complexity of the actual sensors
used from the application. Whether the location
of people is sensed using Active Badges, floor
sensors, video image processing or a
combination of these doesn’t change the
application.

• They abstract context information to suit the
expected needs of applications. A location widget
for example, provides street or room names
instead of geographical coordinates and room
IDs. Widgets provide abstracted information that
we expect applications to need the most
frequently.

• They provide reusable and customizable building
blocks of context sensing. A widget that tracks
the location of a user can be used by a variety of
applications, from tour guides to office
awareness systems. Furthermore, context
widgets can be tailored and combined in ways
similar to GUI widgets. For example, a Presence
widget senses the presence of people in a room.
A WhiteboardActivity widget senses when the
room’s whiteboard is being used. A Meeting
widget may rely on the Presence and
WhiteboardActivity widgets and assume a

meeting is beginning when two or more people are
present and the whiteboard is in use.

From the application’s perspective, context widgets
encapsulate context information and provide methods
to access it in a way very similar to a GUI toolkit.
However, due to the unique characteristics of context
information, context widgets are different from GUI
widgets in several ways.

3.3. Differences between context widgets and
GUI widgets

There are several important differences between
context widgets and GUI widgets. These differences
deal with reliability, distribution, persistence, and with
the availability of a complete widget hierarchy.

Context information is usually acquired from sensors,
many of which are notoriously unreliable. They may
provide noisy data, drift, or simply fail under certain
conditions. To account for this, confidence factors
must be associated with context information at all
stages, and must be propagated up to the application
so that it can make informed decisions.

Context may be acquired from multiple distributed
sources and used in yet another location. A typical
mobile application for instance, will require information
about the status of remote or nearby resources, such
as the nearest printer that is not busy. Furthermore
the location of the user may be known to a central
system (e.g., an Active Badges server) that the
mobile devices need to query. Thus, a supporting
distributed infrastructure is required. In our view,
each context widget is an independent process that
may be distributed anywhere on the network.

Context may be needed at any time by an application.
Thus a context widget is active all the time, and its
activation is not, as with GUI widgets, driven by
applications. Furthermore, the application may need
information acquired at any time in the past. For
instance, an application might pull up the notes the
user took the last time she was meeting with the
same people she is currently meeting with. To this
aim, context widgets maintain a history of context
information, typically stored in a database.

Finally, the structure and completeness of a context
widgets library is still an open research issue.
Although our categories of section 2.1 might provide
an initial breakdown roughly analog to Foley’s
categories of interaction widgets, we still need to
develop new applications and explore the utility and
richness of context information to be able to address
this issue.

4. Multimodality and context-
awareness
Looking at some definitions of multimodality is an
interesting and useful exercise for anyone interested
in context-awareness. Indeed, system-centric
definitions of multimodal systems [11] can be
extended to account for context-aware systems
without difficulties. Multiplicity of communication
channels between the user and the system and high
power of abstraction (for input), are the two key
features that characterize multimodal systems. To

Daniel Salber, Colloque sur la multimodalité, Mai 2000, IMAG, Grenoble

ensure that context-aware systems are covered in all
their diversity, it might be necessary to stretch the
notion of « user » to « user and environment ». But
this extension is already implicit in some systems
presented as multimodal, such as some biometrics
systems. A more salient difference between these
systems is actually found when looking at them from
a usage perspective : do users act and perform
commands, or are they observed by the system,
which then adapts its behavior ? In other words, does
the user intentionnally direct commands at the
system, or does the user act in the real world, and
her actions and other changes in the environment are
picked up by the system without explicit user action ?
Or, to adopt a system-centric perspective, does the
system expect well-formed complete commands or
does it sense its environment and tries to derive
commands (or parameters to commands) from the
context information it gathers ?

This discussion suggests that multimodal systems
and context-aware systems differ mainly in the way
the information is acquired by the system : explicit
user input vs. implicit sensing. It is thus valuable to
analyze further some issues related to the
construction of context-aware systems and relate
them to key issues raised in multimodal systems
development : data fusion and abstraction. (Let us
note in passing that context-aware systems research
suffers from the very same problem that multimodal
systems once encountered : too much focus on
input, and little concern for output. Output in the case
of context-awareness relates to the control of
actuators, or of the sensors themselves.)

4.1. Data Fusion

Fusion of context information is a key issue for
context-aware systems. Fusion comes into play at
several levels : to enhance reliability, multiple similar
or heterogeneous sensors can be used to acquire the
same context information. For example, sensing the
presence of a user in a room can require the
deployment of several presence sensors, e.g.,
because the space to cover is greater than the range
of a single sensor or to compensate for the
innacuracies of the sensors used. A more complex
example of fusion would be a context widget that
determines if a meeting is taking place in the room : it
might combine calendar information from a public
schedule, sensors to detect the presence of people,
if they’re sitting, if they’re talking together, etc. In
multimodal systems, fusion has been recognized
early on as a key mechanism and generic fusion
engines have been developed [10, 12]. A preliminary
study of the Open Agent Architecture for example,
showed that it provides an adequate distributed
platform and fusion mechanism for context-aware
systems. The applicability of the multimodal fusion
mechanisms to context-aware systems still needs to
be investigated thoroughly. Useful for assessing
fusion needs, the CARE properties framework [3] is a
promising tool for the analysis of context-aware
systems. Indeed, by simply considering a context
information that needs to be acquired, instead of a
command, the CARE properties can be easily adapted
to context-awareness.

4.2. Abstraction

Our presentation of context-aware systems and the
context widget model we have introduced emphasizes
the need to abstract low-level information acquired
from sensors to suit the needs of applications.
Currently, this abstraction step is usually more
complex than what is typically needed in a multimodal
system. However, some similar questions are raised.
For instance, when abstracting, should we keep track
of the way (e.g., device) the information was acquired
in the first place ? In our model, we decided against it
because of the sheer variety of sensors available.
Instead, we aim at propagating to the application
meta-information that characterizes the piece of
context information provided. For now, this meta-
information is limited to a confidence factor that is
determined in part by the type of sensor used. But
additional details that describe more thoroughly the
quality of the context information might be useful.

5. Conclusion
Context-aware systems development faces significant
challenges as multimodal systems did ten years ago.
We have introduced rough classifications that identify
categories of context information and classes of
context-aware applications. A software model, based
on the notion of context widget, provides an easy
way for designers and developers to deal with context
while being shielded from the intrinsic difficulties of
context acquisition. Finally, we have shown that
context-aware and multimodal systems share salient
characteristics and that we should take a further look
at how context-awareness and multimodality might
benefit from each other.

Bibliography
[1] Abowd, G.D., Atkeson, C.G., Hong, J., Long, S., Kooper, R.,

and Pinkerton, M., Cyberguide: A mobile context-aware tour
guide, ACM Wireless Networks, 5 (3), 1997, 421-433.

[2] Brotherton, J., Abowd, G.D., and Truong, K., Supporting
capture and access interfaces for informal and opportunistic
meetings, Technical Report GIT-GVU-99-06, Georgia
Institute of Technology, GVU Center, 1999.

[3] Coutaz, J.l., Nigay, L., Salber, D., Blandford, A., May, J., and
Young, R.M., Four Easy Pieces for Assessing the Usability of
Multimodal Interaction: the CARE Properties, in Proceedings
of INTERACT'95 Lillehammer, Norway, 1995.

[4] Davies, N., Mitchell, K., Cheverst, K., and Blair, G.,
Developing a context-sensitive tour guide, in Proceedings of
1st Workshop on Human Computer Interaction for Mobile
Devices, 1998.

[5] Dey, A.K., Futakawa, M., Salber, D., and Abowd, G.D., The
Conference Assistant: Combining context-awareness with
wearable computing, in Proceedings of 3rd International
Symposium on Wearable Computers San Francisco, CA,
1999, 21-28.

[6] Dey, A.K., Salber, D., and Abowd, G.D., A context-based
infrastructure for smart environments, in Proceedings of 1st
International Workshop on Managing Interactions in Smart
Environments (MANSE '99) Dublin, Ireland, 1999, (to
appear).

[7] Fels, S., Sumi, Y., Etani, T., Simonet, N., Kobayshi, K., and
Mase, K., Progress of C-MAP: A context-aware mobile
assistant, in Proceedings of AAAI 1998 Spring Symposium on

Daniel Salber, Colloque sur la multimodalité, Mai 2000, IMAG, Grenoble

Intelligent Environments Palo Alto, CA, AAAI Press, 1998, 60-
67.

[8] Hertz (1999). NeverLost. Available at
http://www.hertz.com/serv/us/prod_lost.html.

[9] Lamming, M. and Flynn, M., Forget-me-not: Intimate
computing in support of human memory, in Proceedings of
FRIEND 21: International Symposium on Next Generation
Human Interfaces Tokyo, 1994, 125-128.

[10]Moran, D.B., Cheyer, A.J., Julia, L.E., Martin, D.L., and Park,
S., Multimodal User Interfaces in the Open Agent
Architecture, in Proceedings of IUI'97 Orlando, FL, ACM
Press, 1997, 61-68.

[11]Nigay, L., Conception et modélisation logicielles des
systèmes interactifs : application aux interfaces
multimodales, Ph.D. thesis, University Joseph Fourier, 1994.

[12]Nigay, L. and Coutaz, J.l., A Generic Platform for Addressing
the Multimodal Challenge, in Proceedings of CHI'95 Denver,
CO, ACM Press, 1995, 98-105.

[13]Pascoe, J., Ryan, N.S., and Morse, D.R., Human-Computer-
Giraffe Interaction – HCI in the field, in Proceedings of
Workshop on Human Computer Interaction with Mobile
Devices, 1998.

[14]Rhodes, B.J., The wearable remembrance agent, in

Proceedings of 1st International Symposium on Wearable
Computers, ISWC '97 Cambridge MA, IEEE Press, 1997,
123-128.

[15]Salber, D., Dey, A.K., and Abowd, G.D., The Context Toolkit:
Aiding the development of context-enabled applications, in
Proceedings of CHI'99 Pittsburgh, PA, 1999, 434-441.

[16]Schilit, B., Adams, N., and Want, R., Context-aware
computing applications, in Proceedings of 1st International
Workshop on Mobile Computing Systems and Applications,
1994, 85-90.

[17]Want, R., Hopper, A., Falcao, V., and Gibbons, J., The active
badge location system, ACM Transactions on Information
Systems, 10 (1), 1992, 91-102.

[18]Weiser, M., The computer for the 21st Century, Scientific
American, 265 (3), 1991, 66-75.

