The Design and Use of a Generic Context Server

Daniel Salber and Gregory D. Abowd
GVU Center, College of Computing
Georgia Institute of Technology
801 Atlantic Drive, Atlanta, GA 30309
{salber, abowd}@cc.gatech.edu

Abstract

Although contextawareness is &ey component for
perceptual user interfaces, vi@ck generic infrastructure for
developing contextaware applications. We propose a
generic infrastructurebased oncontext serversthat store,
share and archive contextualdata. We describe a few
applications we havéuilt that take advantage ofcontext
sharing and context history. We then turn to tteverall
design of our context server and analyze in démiservices
with a worked example.

1. Introduction

Context awareness recognized as aimportantfeature
for ubiquitousand wearablecomputing. Context sensing
andinterpretation techniquesre maturing and applications
demonstratehe value of using contextliowever, bridging
the gapbetweensensingand interpretation techniques on
one hand and applications on the othand ismostly done
using ad hodechniques. The lack djeneric infrastructure
requires developers to rely on custeaiutionsfor handling
context and hinders the development of new applications.

In this paper, we first look at commosources of
context and emphasize theeedfor two oftenoverlooked
generic context handling features: context sharingninti-
user settingsnd context history. Wedescribeapplications

that takeadvantage ofhese features. We then turn to the
design of an infrastructure for supporting such applications;

We first explain our goals and thelescribeour architecture
for a generic context server. We finally explés behavior
in detailwith the analysis of an example application tha
uses bothsharedcontext and context history toprovide a

group of users with notifications of their common web

surfing interests.

1.1. What is Context?

Context is usuallyunderstood asnformation that the
system can sensdprocess to facilitate human-computer
interaction. In most cases, this informatiorpesipheral to
the user’'stask. Typically, context information iased to
modify the system’s behavior, trigger system actions, tag
captured data dnform the user. Contextual information is
acquired by specific sensors and is either posted polied
by context-aware applications.

In the next section, we look at commonlged sources
of context. Besides these, we identify tawerlookedareas:
sharing context in multi-user settingand exploiting
context history.

1.2. Sources of Context

We distinguish four broad categories of context
environments: physical, system, applicaticand social.
The physical environment and notably the user’s location is
a most commonlyusedsource of contexfl, 4, 10, 12].
The system’s environmenitg., OS-level information, is a
second popular source ofcontext: nearby computing
resourceg13], networktraffic [17] andconnectivity [6] are
presented tothe user owsed to tdor the interaction.
Similarly, application environment data, such as cheent
text selectionprovidescontext information thatan help
anticipate user actions [3, 5, 11Finally, the social
environment is a relevant source of context information:
information about people such as thesence ofpeople,
their identity, their activity, may besed by systems to

t either provide information to other users or tailor the

system’s behavior to a user’s needs or preferences [1].
Although resexh has beegarriedout onidentifying
and tracking people in a scene, there f#® convincing
applications that takedvantage ofocial context.Shared
context informationcan provide richesocial context and

" Information on the context server is available on the web at: http://www.cc.gatech.edu/fce/contextserver/

provide a foundation foapplications. We also notice that 1.4. Context History
context awareapplications use context information at the
presenttime. Context history alsgrovides interesting
information. We will discuss context sharingnd history
further in section 1.4.

Most contextawareapplicationsdeal with context data
concerning the present. Except foontext-based retrieval
applications [7], there has not been much work done on the
value of context data history. A marginal exampleapture
1.3. Shared Context appllications. In this case, conte@ta is not remembered

for itself, butbecause it is associatedth some captured

There is previous work on sharing physical context piece of data.
information and namely location. For instance, user's However, in everyday social relationships werely
currentlocation tacked by aractive badge mawot trigger naturally on historicablata.For instance, when looking for
any relevant actions for theearer.But this information somebody, we ask colleagues if they have seerpdrison
will help a colleague locate her to discuss an urgentin the recentpast. This information may actually lmore
problem or allow the secretary forward aphone call [16]. useful than the current location of the person. If she&n
However, context sharingan beextendedprofitably to a in her office, she saw the note left on her desksha's
user's systermand application context inorder to provide probably read her email. A user'srecent context (her
social context to other users. Context sharing at the level ofvhereabouts) helps other users interact with her.

a group is another unexplored area. Similarly, a history of URLs visited mayprovide

While Daniel is editing thisdocument, information interesting clues to both the userdcolleagues as to what
related to his current task such as the name of his frontmoséasks the user was engaged in.
window or the paragraphhe’s working inare part of his Another example would be a context history-awante-
application context information. Unless he uses a contextaking aid. It could look up meeting history information and
aware application that for example exploits application pull up notes taken the last time the user atisnding a
context to anticipate his actions, it has little vatugside meeting with the same persons. A similar applicationld
his currenttask. However, for Gregorywho is trying to be provided to students attending classes.
decide if he shouldet to work on th@aper or carry on an
unrelatedtask, Daniel's application contexirovides him
with social context that makes himware of Daniel's We havedesigned anduilt applicationsbased on a
current activity and can help him decide his course of actiongenericcontext server. Iithis section, welescribethree of

Similarly, if Gregory is onthe road and Word is not them that exploit context sharingnd context history
available in his system environment, Daniel's systemcapabilities of the infrastructure.

should be made aware of it and be abl@ravide him with
a format that Gregory can read. 2.1. Where Have You Browsed Today?

Sharing context is also interesting fargergroups. An
application we envision provides a group of peayathered
in a socialareawith a display of news likely to interest
most of them. By gatheringachuser’spreferreddaily Web
sources of news, it ddes to display on &rge screen the
news sourceéhat most peopl@resentprefer andthe news
items people haven't read yet. Another potential applicatio
relies on the inspection of peoplelsreademail. When a
member of a workgroup sendwerybodyelse an urgent
message(e.g., a meeting timechange), the application
allows the sender tocheck that everybody has read the
message.

In group-level context sharing, context information
from severalusers isgathered and synthesizéwto a new
piece of context. Everybodybeing aware ofthe meeting
time change issocial context to theenderThis gathering
of private information mayppearike a potentialprivacy
threat. To give users control over the information that is
gathered, our infrastructure provides users with customizabl
privacy protection mechanisms (see section 4.2).

2. Applications

The “Where Have You Browsed Today?"application
aims at stimulating discussidmetween peoplevho may
share common interests based on their web surfing activity.
In contrast to collaborative browsingpols [9], this
application matches users’ interesafter they're done
rprowsing to stimulate interaction when they may rbere
available to engage in discussion.

The application consists of a URLs logger thaptures
the current URL displayed in the user’'s web browser. Using
the historyfeature,logs of visited URLscan begenerated.

At the end of the day, URLs logs atemparedor common
web pages or sites. The resultused tonotify the users if
they’ve been visiting the same pages or sites that day.

It is important to note that users do not kneach
other's URL logging history, which most usevgould
consider private data. Only those URLs that are common to
all users are revealethdonly to them. Still, other options

ay be explored, like requasi permission fromeach user
efore sharing her common URLSs.

2.2. Are You Reading Me?

The “Are You Reading Me?"application isintended to
facilitate email communication. Suppose Danieleds to

3. Context Infrastructure Design

In this section, wedescribeour design of a context
infrastructure tosupport the applicationdescribed in the

send anurgent message to Gregory, who is usuallyprevious section. We first outline outesign goals and
overloaded with email. Email seems convenient but is it theobservethat existing contexinfrastructures don’t achieve

right medium to get in toucleffectively with Gregory
today?

The “Are You Reading Me” application adds two
functions to Daniel’'s email client:

- The first one allows Daniel to know how many

messages are left unread in Gregory’s Inbox.

- The secondfunction allows Daniel to know how
many previous messages from him Goegory are
still left unread.

Daniel's email client fetches these two pieces of
information fromGregory’scontext. They allow Daniel to
assess Gregory’s current ema#d andthe fitness of email
for sending an urgent message.

Gregoryhas the possibility teestrict access to these
pieces of his context. Typically omeould wantonly close
colleagues to be able to inquiadout one’scurrent email
load.

2.3. Let's Have A Meeting!

The “Let'sHave A Meeting!” application uses context
to provide more efficient scheduling. Whetwo people
decide tohave ameeting, they usually bottreate an entry
into their schedule. Both entries havihe samealate,
symmetrical information (A enters “meeting with B”, B
enters “meeting withA”") and each user mayadd private
notes. Using context may alleviate this duplication of work.

With our application, only one user has toeate an
entry in her schedul&She themsharesthis entry with the
other person involved. If for instanc®ory and Daniel
decide to schedule meeting, Gregory creates an entry
labeled“meeting with Daniel” in his schedule.With an
extra cick, he shareshis entry with Daniel. Thisaction
creates aymmetrical entry (i.e., “meeting witBregory”)
in Daniel's schedule at the sanuate. If the meeting
involves a third party, the name of the third pappears in
both entries. Users can add personal information tentrg
once it is created.

In this case, bothDaniel's and Gregory’s context
information is used. WhefGregory shareshis meeting
entry, his own context is queried for tlwser's name to

them. We then turn to our overall design and architecture.

3.1. Design Goals

To providethe servicegequired bythe applications we

just described, our infrastructure goals are threefold:

1) allow for networked applications tccesdocal and
remote context data in a heterogeneous
environment;

2) accommodate a variety applications, sensors, and
operations on context data;

3) preserve the history of contextual data sensed.

With these objectives in mind, let us examine previous

work on context infrastructures.

3.2. Previous Work

A few generic context-handling infrastructurésve
already beerdeveloped,notably Schilit's architecture for
context aware mobilecomputing [13]and Hull et al's
SitComp service [8].

Schilit's architecture mainly aims at storing contdata
in a repository accessible by networked applications running
on mobile ParcTab devices or fixed computers. Applications
as well as sensors manipulate contatadirectly andthus
must be aware othe storage moddhdependence of
applications and sensors from context data iggnatanteed.
Furthermore, no provision is made for storing the history of
context data.

The SitComp (Situated Computing) service software
component utilizes local sensors farovide situation
information to applications through an API. Applications
can either query the SitComp service or ask to be notified of
context changesSitComp alsoperforms fusion ofdata
from multiple local sensorsand abstractsraw data into
context information at a higher level of abstraction.
SitComp puts the emphasis onhese abstraction
mechanismsand provides a clearseparation between
applications on one handand context sensing and
abstracting mechanisms on the other. HoweS&omp is
intendedfor applications running on a single computer and

reconstruct a complete meeting entry, namely to addjoesn't allow remote access. Although the authors envision

Gregory’'s name as a participant ttoee meeting (this was
implicit in Gregory'sentry). Then, the complete meeting

information is sent over to Daniel's scheduling application.

This application in turnqueries Daniel's context for the
user’s nameand scans the meeting information to try to

match the user’'s name. It then removes it if present an

creates the entry in Daniel's schedule.

using context history focontext-basedetrieval, SitComp
does not seem to support this yet.

3.3. Global Design

d Our infrastructure iscomprised ofcontext serversthat

maintain a dynamic model of conteddita. WEefirst look at

the services provided by a context server and assesthi®ow serverslog changes in contexiata andpreservehistorical
infrastructure achieves our objectives stated in section 3.1. data. They allowaccess ta@ontextdata at anyoint in the
In our model, contexdata is sensed by devices and past or retrieval of a value over a time interval.
gathered in aepository by the computer thedevices are]]
attachedto. Computers may biixed or mobile and are 3.4. Architectural Design
connectedhroughfixed or wireless networks. Acomputer
is attached either to persons (individuals or groupp)aces
(e.g., rooms, buildings, vehicledtach computeruns a
contextserverthat gathersaw local contextdatathrough
sensors, stores @nd providescontext dataaccess to local
and remote applications. lraddition, each context server
runs servicesgalledcontext synthesizers, that act tocal
or remote contextlata togeneratecontext information at a
higher level of abstraction.
Access to localand remote contextdata is provided
through a contextaccess APl. This API guarantees
independence dipplications from sensors as well as from

The contextserver's architecture is organized finree
functional layers (see figure 1):

- The context management laygealswith context
storage and acquisition;

- The contextaccess layer provides &Pl for local
andremoteaccess ta@ontextdata aswell as access
control mechanisms;

- Finally, the context-synthesizingayer provides
abstraction mechanisms that act on larad remote
context data e.g., for group context sharing.

the particular storagenodel used. Toallow access by Context Context
heterogeneouslients, the API is a network ARdased on Aware App /|Synthesizers
XML [15] andHTTP. Each context serverruns an HTTP N

server asvell as an XML parser. Requesiad replies are

encoded inXML. This mechanism isdetailed in section
L . Context Access API
3.4.2. Similarly, a componembediates accesses from and
to context sensors so they do natcessthe context A
repository directly. As in SitGop, twomodels of ‘l’l
communication are supported: eveatsd requests. In the .
events basethechanism, the context-generating component Context Management
(either a sensor or the context repositaygherates events
to registereccomponents when theensed or storedata 4\ /1\ /T\ 4\ /1\
changes. In therequest method, the context aghering Sensors
component (either an application or the repository) polls the
context-generating component when needed. This distinction Figure 1. The overall architecture of the
reﬂeCtSthe dichotomy aady Observed iruser interfa.ces context serverThe three rectang|e$onstitute
between status, i.e., continuously available information and the context serverArrows show context data
events, i.e., atomic, transient information [2]. flow between components. Dashed arrows
As emphasized irSitComp, raw context data must denote XML encoded communications.

sometimes beabstractednto higher level information. To
achieve this, a context server hosts synthesizers. 3.4.1. Context Management
Synthesizers are pluggable modules #essontextdata _
through the APlandgeneratenew contextlatathat is fed The context management laygovidescontext storage
back to the context server. Thrug-in mechanismwill angl acquisition. It consists of thr_e_e_ components: a persistent
allow us toreuse or developur own context abstraction OPIeCt database, xontext acquisition componengnd a
componentsbasedon, e.g., heuristic rules oase-based CONtext handlers component.
reasoning. Examples of abstraction mechanigmkide:
deducing the stateand country from a city name and
assessing if a room i®ccupied ornot by combining
ambient lighting, sound leveland presencesensorsdata.
Synthesizers alsaggregatecontext data from multiple
context serversand perform comparisons as ithe URLs
log comparison example of paragraph 2.1. Another examp
of aggregation is the detection of spatial relationstepg.,
adjacency, inclusion) between geographical context
information collected from multiple context servers.

Finally, to allow the use of context historgontext

The repository of contextlata relies on anobject
databaseContextdata is organizethierarchicallyaccording
to categoriesand is referred taccording to anaming
scheme. Top levedategories correspond @mtities context
data is attachedo, e.g., group, user, room, system,
I(_gpplication. Lower levels partition each entity into
categories of context data (e.g., sound, light and location for
a room, relevant objects or properties for an application,
etc.)

In our contextdata model, a number of common

attributes are attached topace ofcontextdata in addition

available on a large variety pfatforms. Interoperability at

to the current value. These attributes serve three functions: the data formatlevel is achieved bythe use of XML to

First, a timestamp attribute issed for historical
purposes.
Second, some attributaetescribethe data sothat

applications can make sense of it oequest

encode all exchanges over the network. Using XML, we can
publish and shareour contextdata hierarchy and naming
scheme in a DTD (Document Type Definition) as well as
the methods t@ccesghe context servethus providing a
conversionse.g., unitsand referenceystems for public API to the context server. Furthermore, XML
geographical coordinates, capabilities are available for a growing number of languages
Third, other attributes give an estimate of the andplatforms, making the port of our conteatcess layer

validity of the data. For instance, polled vallese
a lifetime attribute that may be qiget by an
application tocheckthe data isstill valid for its
purpose.

In addition, the history of a givepiece ofdata is stored
in the database andan begueried.For datawhose future
valuescan bediscovered(e.g., by looking up theuser's
schedule), the future scheduled values are also stored.

The context acquisition componemtovides a sensor-
independent interfader storingand updating contextlata
values. This component geigw datafrom contextsources
and updatesthe databaseaccordingly. This component
insulates the contextdatabasefrom the sensors and
guaranteesndependencevith regard tothe specifics of a
particular sensor.

The contexthandlerscomponentprovides context data
manipulation functions thamediateall accesses to the
database. Its roles are twofold: it hides the actual structure of
the data to guaranteeindependencewith regard to the
accessing components, including applicationsand it
provides accessontrol capabilities. Remotaccess to any
piece of contextan be granted dorbidden bythe user, or
can be restricted to a list aluthorizedcontext servers. This
privacy protection scheme however, placdaiaen on the
user who has to configure access explicitly.

3.4.2. Context Access

The context access layerconsists of the context
accessors component.ptovides arapplicationinterface to
accesscontext data remotely. The interface allows an
application to get or set the value opiace ofcontextdata
and/or specific attributes. Contextaccessorsquery the
context databasahrough its contexthandlerscomponent.
The query is encoded as aemote procedure callRPC)
expressed irKML androutedvia HTTP. A typicalremote

relatively easy.

<?XML VERSION="1.0"?>
<methodCall>
<methodName>ContextServer.get</methodName>
<params>
<contextName>
<contextCategory>
<User/>
</contextCategory>
<contextltem>
<EmailAddress/>
</contextltem>
</contextName>
</params>
</methodCall>

Figure 2. An XML/RPC query (simplified). An
application calls the “get” method of aontext
server. It passes as a parameter the name of the
requested piece of context: item EmailAddress in
category User. Thigjuery is sent using HTTP
POST.

<?XML VERSION="1.0"?>
<methodResponse>
<params>
<contextRecord>
<contextValue>
salber@cc.gatech.edu
</contextValue>
</contextRecord>
</params>
</methodResponse>

Figure 3. The XML reply to the query of figure
2 (simplified). A context record is returned
which contains the requestedvalue. Acontext

record maycontain additional attributegor a
piece of context (e.g., a timestamp).

3.4.3. Context Synthesizers

context query is shown in figure 2. The
encoded in XML and is shown in figure 3.

In distributed heterogeneousnvironments typical of
ubiquitous computing or mobilandwearablesystems, the

The context synthesizer layer is ¢harge ofusing raw
contextdata togeneratehigher level of abstraction context
data. It consists of two components: conteaistractors
abstract local contextlata; context aggregatorgenerate
higher-level contextdata fromlocal and remote context

reply is also

variety of platformsand programming languages in use servers.

makes interoperability a primequirement. Interoperability
at the networking levatan beachieved byusing TCP/IP.
Our choice ofHTTP as the transport protocddcilitates
interoperability further: HTTPserversand client APIs are

The context abstractors component is dharge of
extracting higher-levellatafrom raw contextdata. It relies
on an active values mechanisnd recomputes high-level
data whenever the radlatasources ar@pdated. Itstores its

result into the context database. For example, an applicationecessary. The sensor script theolls the value of the
may needthe currentlocation of the user as a stre@ime current URL affive-secondntervalsandgenerates an event
whereasonly geographicalcoordinates areavailable. An to the context handlers whenever the value changédarrin
abstractor wouldimplement therequired algorithms to the contexthandlers updatthe valuestored inthe database
generate geographicalontext as street names from the and maintain history information.
sensed geographical coordinates. An interesting issue that arises is how losgould
The context aggregators componebnsists of history information be kept for a particular piece of context.
functions that operate on similpieces of locabndremote Since the use of history information is up to the
context data. They accesslocal data through the context applications, we don’t have an easy answer to this question.
handlers interfaceand remote data through the context The current context server allows for arbitrary cutoff dates to
accessors. An example aggregatothe URL comparison reduce the amount of context data that is stored.

function described in section 2.1 and detailed in section 4.2.

4.2. Interacting With the Application
4. Context Servers at Work

A scheduler runs th&/HYBT applicationeveryday late
in the afternoon. The application nfigured to serve a
fixed list of usersreferred to bythe name of their
workstations. It runs on a group contesdrver hosted by

In this section, we explain idetail how the context
serverswork. We revisit the"Where Have You Browsed
Today?” application (WHYBT for short) described in section

2.1 andlook at what is happeningehindthe scenes. This e of the users’ workstations. It must firsuesthe list
particular example takeslvantage ofmost services of the of URLs common to all users for the currelaty and, if the
context servers: history, context access and context sharinqist is not empty, request each user's eragllress from the
The currentcontextserverprototype is implemented in .qtext servers 'and notify each user by email.
Frontier, a scri_pting language anq enviro_nment thgt fuNs ON The comparison of the URLS histories is performed by a
MacOS and Windows [14]. Frontier provides uswith @ gegicated “URLHistoryAggregator” script. It is a synthesizer
persistent objectdatabase XML encoding and parsing, gng a5 sch, registers with the local conteandlers to
HTTP clientand serversupport, and anAppleEvents or gecjarethe names of the contedtathat it takes asnput
COM interface for inter-application communication. andthat it provides as output. Ithis case, theynthesizer
_From the point of view of theVHYBT application, ses “webBrowser.CurrentURL” data and provides
things are pretty simple: itequests a comparison of the «yepBrowser.CurrentURLCommonSubset” data. It needs as
history of apiece ofcontextdata(the currentURL) for all - o aqditional parameténe list of contexserversthat take
usersconcemed. Ithen sends aremail to all users wWho ot i the comparison as well as the history timespan to be

have URLs in common. It thusneeds toretrieve an qonidered. For aggregatotisis list is usuallyprovided by
additional piece of context information: the email address of},o cjient application.

the users involved. This application assumes thadraext Finally the WHYBT application queries local and

server is assigned achuserand isrunning on theusers amote contexservers fothe emailaddresses ofhe users

workstation that she uses for browsing. More elaboratg,,qlved. The XML query andreply used areshown in
schemes could beevised tolet users browsedifferently £ re 2and 3. Ithen generateemail messages informing
on a number of workstations or mobile devices. users of their common web visits for the day.

The role of the contextserver for the WHYBT)
application is twofold: it first gathersnd stores URL 5. Conclusion
context data, and then interacts with theWHYBT

o . We have presented a generic context-handling
application to serve its requests.

infrastructurebased orcontext servers. Contexervers are
4.1. Gathering and Storing the Current URL particularly suited fqr sharing contexfata andproviding
access tocontext history. These features enable us to

To allow handling by the conteserver ofthe “Current explore promising new applications. Our immediate goal is

URL” piece of context, two componentare needed: a to develop more applicationtsased onthe contexservers

sensor component that is able to grab the current URL froninfrastructure. Of particular interest are applications riblgit

the browser application, and an entry in the context on elaborate context interpretation (e.g., freicieo images)

databaseThe sensor component is a script tbatnects and applications aimed at mobile users.

through MacOS AppleEvents to thidetscape or Explorer

browser ofthe user. At first, the script registers with the

contexthandlerscomponent(see3.4.1) and declares iwill The first author is currently funded by a fellowship from

provide “WebBrowser.CurrentURLinformation as events. INRIA whose support is gratefullgcknowledged. Wevish

The contexthandlersthencreate arentry in thedatabase if to thank members of the Future Computing Environments

6. Acknowledgments

group at GeorgiaTech for fruitful

discussions and

particularly Anind Dey forinsights and comments on our
architecture and prototype applications.

7. References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

G. D. Abowd, C. G. Atkeson, J. Hong, S. Long, R.
Kooper and M. Pinkerton. Cybengide: A Mobile
Context-Aware Tour GuideACM Wireless Networks
3:421-433, 1997.

G. D. Abowdand A. JDix. Integrating status and
event phenomena in formal specifications
interactive systems. ACM Software Engineering
Notes 19(5):44-52, December 1994.

Apple Research Laboratorief\pple Data Detectors
homepage.

of

[13]

[14]

[15]

[16]

http://www.research.apple.com/research/tech/AppleDat

aDetectors/, Apple Computer, 1997.

N. Davies, K. Mitchell, K. Cheversand G.Blair.
Developing a Context Sensitive TouGuide.
Proceedings ofirst Workshop on Human-Computer
Interaction for Mobile Devices pp. 64-68, 1998,
Glasgow, UK.

A. Dey. Context-AwareComputing: TheCyberDesk
Project. Proceedings ofthe 1998 SprindAAAI
Symposium on Intelligent Environment998.

M. R. Ebling and M.Satyanarayanan. On the
Importance of Translucence fdrlobile Computing.
Proceedings ofirst Workshop on Human-Computer
Interaction for Mobile Devices pp. 69-72, 1998,
Glasgow, UK.

M. L. M. Flynn. Forget-me-not: Intimate computing
in support of human memoryProceedings of
FRIEND21: International Symposium on Next
Generation Human Interfacegp. 125-128, 1994.

R. Hull, P. Neavesand JBedrod-RobertsTowards
SituatedComputing.Proceedings olEEE ISWC'97,
First International Symposium on Wearable
Computer§997, Cambridge, MA, USA.

H. Lieberman, N. V. Dykeand A.Vivacqua. Let's
Browse: A CollaborativeWeb Browsing Agent.
http://lieber.www.media.mit.edu/people/lieber/Liebera
ry/Lets-Browse/Lets-Browse.html, MITMedia Lab,
1998.

E. D. Mynatt, M. Back, R. Wantand R.Frederick.
Audio Aura: Light-Weight Audio Augmenteldeality.
Proceedings ofthe ACM UIST'97 Symposium on
User InterfaceSoftwareand Technology p. 211-212,
1997.

M. Panditand SKalbag. The Selection Recognition
Agent: Instant Acess toRelevant Information and
OperationsProceedings ofntelligent User Interfaces
'97, 1997.

J.Pascoe, N. Ryaand D.Morse. Human-Computer-

[17]

Giraffe Interaction: HCI in theField. Proceedings of
First Workshop on Human-Computer Interant for
Mobile Devicespp. 48-57, 1998, Glasgow, UK.

W. N. Schilt. Systemarchitecturefor context-aware
mobile computing.Ph.D. Thesis, 1995, Columbia
University.

UserLand Software. Frontier
http://www.scripting.com/frontier5/,
Software, 1998.

W3C XML Working Group. Extensible Markup
Language (XML) 1.0.
http://www.w3.0rg/TR/1998/REC-xmI-19980210,
World-Wide Web Consortium, 1998.

R. Want, A. Hopper, V. Falcaand J.Gibbons. The
active badge locatiosystem.ACM Transactions on
Information Systems0(1):91-102, 1992.

M. Weiser and J. S.Brown. Designing Calm
Technology.Workshop on Ubiquitou€omputing at
CHI 1997 1997.

5.1.
UserLand

